[1] Comas I, Coscolla M, Luo T, et al.Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet, 2013, 45(10):1176-1182. [2] World Health Organization.Global tuberculosis report 2013. WHO/HTM/TB/2013.11. Geneva: World Health Organization, 2013. [3] Xu Y, Zhang Z, Sun Z. Drug resistance to Mycobacterium tuberculosis: From the traditional Chinese view to modern systems biology. Crit Rev Microbiol, 2014. [Epub ahead of print]. [4] Wolucka BA, McNeil MR, de Hoffmann E, et a1. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem, 1994, 269(37):23328-23335. [5] Thomas JP, Baughn CO, Wilkinson RG, et al. A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2, 2′-(ethylenediimino)-di-1-butanol). Am Rev Respir Dis, 1961, 83: 891-893. [6] Zhao Y,Xu S,Wang L,et al.National survey of drug-resistant tuberculosis in China. N Engl J Med, 2012, 366(23):2161-2170. [7] Jain A1, Mondal R, Srivastava S, et al. Novel mutations in emb B gene of ethambutol resistant isolates of Mycobacterium tuberculosis: a preliminary report. Indian J Med Res, 2008, 128(5):634-639. [8] Bloch AB, Cauthen GM, Onorato IM, et al. Nationwide suvrey of durg-resistant tuberculosis in the United States. JAMA, 1994, 271(9):665-671. [9] 汪晓艳,赵雁林,逄宇等. 重庆市结核分枝杆菌临床分离株的基因分型及相关耐药性分析.中国防痨杂志,2013,35(9):668-672. [10] 洪峰,高志东,李波等. 北京市耐多药肺结核控制5年结果分析.中国防痨杂志,2013,35(9):706-710. [11] Biadglegne F, Tessema B, Sack U, et al. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia. Indian J Med Res, 2014, 140(1):116-122. [12] Forbes M, Kuck NA, Peets EA. Effect of ethambutol on nucleic acid metabolism in mycobacterium smegmatis and its reversal by polyamines and divalent cations. J. Bacteriol, 1965, 89(5):1299-1305. [13] Fraunfelder FW, Sadun AA, Wood T. Update on ethambutol optic neuropathy. Expert Opin Drug Saf,2006, 5(5):615-618. [14] Silve G, Valero-Guillen P, Quemard A, et a1. Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug. Antimicrob Agents Chemother, 1993, 37(7): 1536-1538. [15] Takayama K, Kilburn JO. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother, 1989, 33(9):1493-1499. [16] Maddry JA, Suling WJ, Reynolds RC. Glycosyltransferases as targets for inhibition of cell wall synthesis in M.tuberculosis and M.avium. Res Microbio1, 1996, 147(1/2):106-112. [17] Riska PF1, Jacobs WR Jr, Alland D. Molecular determinants of drug resistance in tuberculosis. Int J Tuberc Lung Dis, 2000, 4(2 Suppl 1):S4-10. [18] 梁建琴,王孟山,吴雪琼. 分支杆菌耐乙胺丁醇分子机制的研究进展.中华结核呼吸杂志,2001,24(2):126-128. [19] Sreevatsan S,Stockbauer KE, Pan X,et a1.Ethambutol resistance in Mycobacterium tuberculosis:critical role of embB mutations.Antimicrob Agents Chemother,1997,41(8):1677-1681. [20] Telenti A,Philipp WJ, Sreevatsan S,et a1.The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol.Nat Med,1997,3(5):567-570. [21] Plinke C, Rüsch-Gerdes S, Niemann S. Significance of mutations in embB codon 306 for prediction of ethambutol resis-tance in clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother, 2006, 50(5):1900-1902. [22] Cheng S, Cui Z, Li Y, et al. Diagnostic accuracy of a molecular drug susceptibility testing method for the antituberculosis drug ethambutol: a systematic review and meta-analysis. J Clin Microbiol, 2014, 52(8):2913-2924. [23] Shen X, Shen GM, Wu J, et al. Association between embB codon 306 mutations and drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2007, 51(7):2618-2620. [24] 丁海榕,秦川,占玲俊. 部分抗结核分枝杆菌药物的耐药机理研究进展.中国防痨杂志,2013,35(8):615-620. [25] Hazbón MH, Bobadilla del Valle M, Guerrero MI, et al. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob Agents Chemother, 2005,49(9):3794-3802. [26] Jain A, Mondal R, Srivastava S, et al. Novel mutations in emb B gene of ethambutol resistant isolates of Mycobacterium tuberculosis: a preliminary report. Indian J Med Res, 2008, 128(5):634-639. [27] Plinke C, Cox HS, Zarkua N, et al. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J Antimicrob Chemother, 2010, 65(7):1359-1367. [28] Park YK, Ryoo SW, Lee SH, et al. Correlation of the phenotypic ethambutol susceptibility of Mycobacterium tuberculosis with embB gene mutations in Korea. J Med Microbiol, 2012, 61(Pt 4):529-534. [29] 李薇,薛欣,赵雍烈等. 结核分枝杆菌乙胺丁醇耐药与 embB 基因突变的相关性研究.中国防痨杂志,2010,39(4):668-672. [30] Cui Z,Li Y,Cheng S,et al. Mutations in the embC-embA intergenic region contribute to Mycobacterium tuberculosis resis-tance to ethambutol. Antimicrob Agents Chemother,2014, 58(11):6837-6843. [31] 乐军,张旻,张红梅,等. 结核分枝杆菌临床分离株异烟肼耐药相关基因突变的分子特征.中华微生物和免疫学杂志,2006,26(10): 950-955. [32] http://tuberculist.epfl.ch/quicksearch.php?gene+name=Rv0340&submit=Search. [33] 庄玉辉,何秀云. 结核分枝杆菌耐药基因研究进展//中华医学会结核病学分会.中华医学会结核病学分会2004年学术会议论文汇编.北京:中华医学会结核病学分会,2004:20-31. [34] Huang H, Scherman MS, D’Haeze W, et al. Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem, 2005, 280(26): 24539-24543. [35] 何磊,李敏.结核杆菌ubiA基因与乙胺丁醇耐药的相关性研究//中国中西医结合学会检验医学专业委员会.第一次全国中西医结合检验医学学术会议暨中国中西医结合学会检验医学专业委员会成立大会论文汇编.北京:中国中西医结合学会检验医学专业委员会,2014:412. [36] Safi H, Lingaraju S, Amin A, et al. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet, 2013, 45(10):1190-1197. [37] Safi H, Sayers B, Hazbón MH, et al. Transfer of embB Codon 306 mutations into clinical Mycobacterium tuberculosis strains alters susceptibility to ethambutol, isoniazid, and rifampin. Antimicrob Agents Chemother, 2008, 52(6):2027-2034. [38] Bergval I, Kwok B, Schuitema A, et al. Pre-existing isoniazid resistance, but not the genotype of Mycobacterium tuberculosis drives rifampicin resistance codon preference in vitro. PLoS One, 2012, 7(1): e29108. [39] Colangeli R, Helb D, Sridharan S, et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol, 2005, 55(6): 1829-1840. [40] Hao P, Shi-Liang Z, Ju L, et al. The role of ABC efflux pump, Rv1456c-Rv1457c-Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol (Praha), 2011, 56(6): 549-553. [41] Velayati AA, Farnia P, Ibrahim TA, et al. Differences in cell wall thickness between resistant and nonresistant strainsof Mycobacterium tuberculosis: using transmission electron microscopy. Chemotherapy, 2009, 55(5): 303-307. [42] Zhang H, Li D, Zhao L, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet, 2013, 45(10):1255-1260. |