Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (2): 102-107.doi: 10.3969/j.issn.2096-8493.2021.02.003
• Expert Forum • Previous Articles Next Articles
Received:
2021-03-30
Online:
2021-06-30
Published:
2021-07-01
Contact:
XU Dong-qun
E-mail:xudq@chinacdc.cn
LYU Ke-yang, XU Dong-qun. The risk of aerosol transmission of respiratory infectious diseases and suggestions for prevention and control[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(2): 102-107. doi: 10.3969/j.issn.2096-8493.2021.02.003
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2021.02.003
[1] |
Kutter JS, Spronken MI, Fraaij PL, et al. Transmission routes of respiratory viruses among humans. Curr Opin Virol, 2018,28:142-151. doi: 10.1016/j.coviro.2018.01.001.
doi: 10.1016/j.coviro.2018.01.001 URL |
[2] |
Pavia A. One hundred years after the 1918 pandemic: new concepts for preparing for influenza pandemics. Curr Opin Infect Dis, 2019,32(4):365-371. doi: 10.1097/QCO.0000000000000564.
doi: 10.1097/QCO.0000000000000564 URL |
[3] |
Pulit-Penaloza JA, Belser JA, Tumpey TM, et al. Swine-Origin H1 Influenza Viruses Isolated from Humans Exhibit Sustained Infectivity in an Aerosol State. Appl Environ Microbiol, 2019,85(10):e00210-19. doi: 10.1128/AEM.00210-19.
doi: 10.1128/AEM.00210-19 |
[4] |
Fears AC, Klimstra WB, Duprex P, et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions. Emerg Infect Dis, 2020,26(9):2168-2171. doi: 10.3201/eid2609.201806.
doi: 10.3201/eid2609.201806 URL |
[5] |
Fennelly KP, Acuna-Villaorduna C, Jones-Lopez E, et al. Microbial Aerosols: New Diagnostic Specimens for Pulmonary Infections. Chest, 2020,157(3):540-546. doi: 10.1016/j.chest.2019.10.012.
doi: S0012-3692(19)34113-3 pmid: 31678308 |
[6] |
Yates TA, Khan PY, Knight GM, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis, 2016,16(2):227-238. doi: 10.1016/S1473-3099(15)00499-5.
doi: 10.1016/S1473-3099(15)00499-5 pmid: 26867464 |
[7] |
Dai H, Zhao B. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simul. 2020: 1-7. doi: 10.1007/s12273-020-0703-5.
doi: 10.1007/s12273-020-0703-5 |
[8] |
Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med, 2015,57(5):501-508. doi: 10.1097/JOM.0000000000000448.
doi: 10.1097/JOM.0000000000000448 URL |
[9] |
Tang S, Mao Y, Jones RM, et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int, 2020,144:106039. doi: 10.1016/j.envint.2020.106039.
doi: 10.1016/j.envint.2020.106039 URL |
[10] |
Peeples L. Face masks: what the data say. Nature, 2020,586(7828):186-189. doi: 10.1038/d41586-020-02801-8.
doi: 10.1038/d41586-020-02801-8 URL |
[11] |
Liu Y, Zhao B. Size-dependent filtration efficiencies of face masks and respirators for removing SARS-CoV-2-laden aerosols. Infect Control Hosp Epidemiol, 2020: 1-2. doi: 10.1017/ice.2020.366.
doi: 10.1017/ice.2020.366 |
[12] |
Lee BU. Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation. Int J Environ Res Public Health, 2020,17(19):6960. doi: 10.3390/ijerph17196960.
doi: 10.3390/ijerph17196960 URL |
[13] |
Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020,581(7809):465-469. doi: 10.1038/s41586-020-2196-x.
doi: 10.1038/s41586-020-2196-x URL |
[14] |
Ciofi-Silva CL, Bruna CQM, Carmona RCC, et al. Norovirus recovery from floors and air after various decontamination protocols. J Hosp Infect, 2019,103(3):328-234. doi: 10.1016/j.jhin.2019.05.015.
doi: 10.1016/j.jhin.2019.05.015 |
[15] |
Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA, 2020,323(16):1610-1612. doi: 10.1001/jama.2020.3227.
doi: 10.1001/jama.2020.3227 URL |
[16] |
Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg Infect Dis, 2020,26(7):1583-1591. doi: 10.3201/eid2607.200885.
doi: 10.3201/eid2607.200885 URL |
[17] |
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 2020,582(7813):557-560. doi: 10.1038/s41586-020-2271-3.
doi: 10.1038/s41586-020-2271-3 URL |
[18] |
Lai ACK, Tan TF, Li WS, et al. Emission strength of airborne pathogens during toilet flushing. Indoor Air, 2018,28(1):73-79. doi: 10.1111/ina.12406.
doi: 10.1111/ina.12406 pmid: 28683156 |
[19] |
Knowlton SD, Boles CL, Perencevich EN, et al. Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrob Resist Infect Control, 2018,7:16. doi: 10.1186/s13756-018-0301-9.
doi: 10.1186/s13756-018-0301-9 URL |
[20] | 毛怡心, 丁培, 孙宗科. 马桶冲水行为与微生物气溶胶. 微生物学报, 2018,58(12):2070-2077. |
[21] |
Sperna Weiland NH, Traversari RAAL, Sinnige JS, et al. Influence of room ventilation settings on aerosol clearance and distribution. Br J Anaesth, 2021,126(1):e49-e52. doi: 10.1016/j.bja.2020.10.018.
doi: 10.1016/j.bja.2020.10.018 URL |
[22] |
Nguyen-Van-Tam JS, Killingley B, Enstone J, et al. Minimal transmission in an influenza A (H3N2) human challenge-transmission model within a controlled exposure environment. PLoS Pathog, 2020,16(7):e1008704. doi: 10.1371/journal.ppat.1008704.
doi: 10.1371/journal.ppat.1008704 URL |
[23] |
Tsui BCH, Pan S. Are aerosol-generating procedures safer in an airborne infection isolation room or operating room? Br J Anaesth, 2020,125(6):e485-e487. doi: 10.1016/j.bja.2020.09.011.
doi: 10.1016/j.bja.2020.09.011 URL |
[24] |
Sun K, Wang W, Gao L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 2021,371(6526):eabe2424. doi: 10.1126/science.abe2424.
doi: 10.1126/science.abe2424 URL |
[25] |
Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med, 2020,382(16):1564-1567. doi: 10.1056/NEJMc2004973.
doi: 10.1056/NEJMc2004973 URL |
[26] |
Hirose R, Ikegaya H, Naito Y, et al. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin Infect Dis, 2020: ciaa1517. doi: 10.1093/cid/ciaa1517.
doi: 10.1093/cid/ciaa1517 |
[27] |
Kang M, Wei J, Yuan J, et al. Probable Evidence of Fecal Aerosol Transmission of SARS-CoV-2 in a High-Rise Building. Ann Intern Med, 2020,173(12):974-980. doi: 10.7326/M20-0928.
doi: 10.7326/M20-0928 URL |
[28] |
Prussin AJ, 2nd, Torres PJ, Shimashita J, et al. Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. Microbiome, 2019,7(1):53. doi: 10.1186/s40168-019-0672-z.
doi: 10.1186/s40168-019-0672-z pmid: 30935423 |
[29] |
Noorimotlagh Z, Jaafarzadeh N, Martinez SS, et al. A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment. Environ Res, 2021,193:110612. doi: 10.1016/j.envres.2020.110612.
doi: 10.1016/j.envres.2020.110612 URL |
[30] |
Sharma A, Preece B, Swann H, et al. Structural stability of SARS-CoV-2 virus like particles degrades with temperature. Biochem Biophys Res Commun, 2021,534:343-346. doi: 10.1016/j.bbrc.2020.11.080.
doi: 10.1016/j.bbrc.2020.11.080 URL |
[31] |
Zhang N, Huang H, Duarte M, et al. Dynamic population flow based risk analysis of infectious disease propagation in a metropolis. Environ Int, 2016,94:369-379. doi: 10.1016/j.envint.2016.03.038.
doi: S0160-4120(16)30121-0 pmid: 27107973 |
[32] |
Zhang R, Li Y, Zhang AL, et al. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A, 2020,117(26):14857-14863. doi: 10.1073/pnas.2009637117.
doi: 10.1073/pnas.2009637117 URL |
[33] |
Anfinrud P, Stadnytskyi V, Bax CE, et al. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. N Engl J Med, 2020,382(21):2061-2063. doi: 10.1056/NEJMc2007800.
doi: 10.1056/NEJMc2007800 URL |
[34] |
Abkarian M, Mendez S, Xue N, et al. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc Natl Acad Sci U S A, 2020,117(41):25237-25245. doi: 10.1073/pnas.2012156117.
doi: 10.1073/pnas.2012156117 URL |
[35] |
Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ Int, 2020,141:105794. doi: 10.1016/j.envint.2020.105794.
doi: S0160-4120(20)31280-0 pmid: 32416374 |
[36] |
Riediker M, Tsai DH. Estimation of Viral Aerosol Emissions From Simulated Individuals With Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw Open, 2020,3(7):e2013807. doi: 10.1001/jamanetworkopen.2020.13807.
doi: 10.1001/jamanetworkopen.2020.13807 URL |
[37] |
Azuma K, Yanagi U, Kagi N, et al. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med, 2020,25(1):66. doi: 10.1186/s12199-020-00904-2.
doi: 10.1186/s12199-020-00904-2 URL |
[38] |
Asadi S, Gaaloul Ben Hnia N, Barre RS, et al. Influenza A virus is transmissible via aerosolized fomites. Nat Commun, 2020,11(1):4062. doi: 10.1038/s41467-020-17888-w.
doi: 10.1038/s41467-020-17888-w pmid: 32811826 |
[39] |
Ogbunugafor CB, Miller-Dickson MD, Meszaros VA, et al. Variation in microparasite free-living survival and indirect transmission can modulate the intensity of emerging outbreaks. Sci Rep, 2020,10(1):20786. doi: 10.1038/s41598-020-77048-4.
doi: 10.1038/s41598-020-77048-4 URL |
[40] |
Gao CX, Li Y, Wei J, et al. Multi-route respiratory infection: When a transmission route may dominate. Sci Total Environ, 2021,752:141856. doi: 10.1016/j.scitotenv.2020.141856.
doi: 10.1016/j.scitotenv.2020.141856 URL |
[41] |
Kulkarni H, Khandait H, Narlawar UW, et al. Independent association of meteorological characteristics with initial spread of Covid-19 in India. Sci Total Environ, 2021,764:142801. doi: 10.1016/j.scitotenv.2020.142801.
doi: 10.1016/j.scitotenv.2020.142801 URL |
[42] |
Crema E. The SARS-CoV-2 outbreak around the Amazon rainforest: The relevance of the airborne transmission. Sci Total Environ, 2021,759:144312. doi: 10.1016/j.scitotenv.2020.144312.
doi: 10.1016/j.scitotenv.2020.144312 URL |
[43] |
Kormuth KA, Lin K, Qian Z, et al. Environmental Persis-tence of Influenza Viruses Is Dependent upon Virus Type and Host Origin. mSphere, 2019,4(4):e00552-19. doi: 10.1128/mSphere.00552-19.
doi: 10.1128/mSphere.00552-19 |
[44] |
Coleman KK, Sigler WV. Airborne Influenza A Virus Exposure in an Elementary School. Sci Rep, 2020,10(1):1859. doi: 10.1038/s41598-020-58588-1.
doi: 10.1038/s41598-020-58588-1 URL |
[45] |
Marr LC, Tang JW, Van Mullekom J, et al. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J R Soc Interface, 2019,16(150):20180298. doi: 10.1098/rsif.2018.0298.
doi: 10.1098/rsif.2018.0298 URL |
[46] |
Islam N, Bukhari Q, Jameel Y, et al. COVID-19 and climatic factors: A global analysis. Environ Res, 2021,193:110355. doi: 10.1016/j.envres.2020.110355.
doi: 10.1016/j.envres.2020.110355 URL |
[47] |
Zhao L, Qi Y, Luzzatto-Fegiz P, et al. COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets. Nano Lett, 2020,20(10):7744-7750. doi: 10.1021/acs.nanolett.0c03331.
doi: 10.1021/acs.nanolett.0c03331 URL |
[48] |
Yang XD, Li HL, Cao YE. Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int J Environ Res Public Health, 2021,18(2):484. doi: 10.3390/ijerph18020484.
doi: 10.3390/ijerph18020484 URL |
[49] |
Welch D, Buonanno M, Grilj V, et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep, 2018,8(1):2752. doi: 10.1038/s41598-018-21058-w.
doi: 10.1038/s41598-018-21058-w URL |
[50] |
Zhao Y, Richardson B, Takle E, et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep, 2019,9(1):11755. doi: 10.1038/s41598-019-47788-z.
doi: 10.1038/s41598-019-47788-z URL |
[51] |
Shi KW, Huang YH, Quon H, et al. Quantifying the risk of indoor drainage system in multi-unit apartment building as a transmission route of SARS-CoV-2. Sci Total Environ, 2021,762:143056. doi: 10.1016/j.scitotenv.2020.143056.
doi: 10.1016/j.scitotenv.2020.143056 URL |
[52] |
Belosi F, Conte M, Gianelle V, et al. On the concentration of SARS-CoV-2 in outdoor air and the interaction with pre-existing atmospheric particles. Environ Res, 2021,193:110603. doi: 10.1016/j.envres.2020.110603.
doi: 10.1016/j.envres.2020.110603 URL |
[53] |
Schinkothe J, Scheinemann HA, Diederich S, et al. Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol, 2021,87(3):e02019-20. doi: 10.1128/AEM.02019-20.
doi: 10.1128/AEM.02019-20 |
[54] |
Ma QX, Shan H, Zhang HL, et al. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J Med Virol, 2020,92(9):1567-1571. doi: 10.1002/jmv.25805.
doi: 10.1002/jmv.25805 URL |
[55] |
Megahed NA, Ghoneim EM. Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ Res, 2021,193:110471. doi: 10.1016/j.envres.2020.110471.
doi: 10.1016/j.envres.2020.110471 URL |
[56] |
Morawska L, Tang J W, Bahnfleth W, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int, 2020,142:105832. doi: 10.1016/j.envint.2020.105832.
doi: S0160-4120(20)31787-6 pmid: 32521345 |
[57] |
Kudryashova OB, Muravlev EV, Antonnikova AA, et al. Propagation of viral bioaerosols indoors. PLoS One, 2021,16(1):e0244983. doi: 10.1371/journal.pone.0244983.
doi: 10.1371/journal.pone.0244983 URL |
[58] |
Wilson N, Corbett S, Tovey E. Airborne transmission of covid-19. BMJ, 2020,370:m3206. doi: 10.1136/bmj.m3206.
doi: 10.1136/bmj.m3206 |
[59] |
Adhikari U, Chabrelie A, Weir M, et al. A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols. Risk Anal, 2019,39(12):2608-2624. doi: 10.1111/risa.13389.
doi: 10.1111/risa.13389 |
[60] |
Buonanno G, Morawska L, Stabile L. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ Int, 2020,145:106112. doi: 10.1016/j.envint.2020.106112.
doi: S0160-4120(20)32067-5 pmid: 32927282 |
[61] |
Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2: Theoretical Considerations and Available Evidence. JAMA, 2020,324(5):441-442. doi: 10.1001/jama.2020.12458.
doi: 10.1001/jama.2020.12458 URL |
[62] |
Echternach M, Gantner S, Peters G, et al. Impulse Dispersion of Aerosols during Singing and Speaking: A Potential COVID-19 Transmission Pathway. Am J Respir Crit Care Med, 2020,202(11):1584-1587. doi: 10.1164/rccm.202009-3438LE.
doi: 10.1164/rccm.202009-3438LE URL |
[63] |
Hu J, Lei C, Chen Z, et al. Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. National Science Review, 2020,7(12):1865-1867. doi: 10.1093/nsr/nwaa250.
doi: 10.1093/nsr/nwaa250 URL |
[64] |
Meselson M. Droplets and Aerosols in the Transmission of SARS-CoV-2. N Engl J Med, 2020,382(21):2063. doi: 10.1056/NEJMc2009324.
doi: 10.1056/NEJMc2009324 URL |
[65] |
Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med, 2020,26(5):676-680. doi: 10.1038/s41591-020-0843-2.
doi: 10.1038/s41591-020-0843-2 URL |
[66] |
Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. The Lancet Respiratory Medicine, 2020,8(9):914-924. doi: 10.1016/s2213-2600(20)30323-4.
doi: 10.1016/s2213-2600(20)30323-4 URL |
[67] |
Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control, 2016,44(9 Suppl):S102-108. doi: 10.1016/j.ajic.2016.06.003.
doi: 10.1016/j.ajic.2016.06.003 |
[68] |
Pasnick S, Carlos WG, Dela Cruz CS, et al. SARS-CoV-2 Transmission and the Risk of Aerosol-Generating Procedures. Am J Respir Crit Care Med, 2020,202(4):13-14. doi: 10.1164/rccm.2024P13.
doi: 10.1164/rccm.2024P13 URL |
[69] |
Fidler RL, Niedek CR, Teng JJ, et al. Aerosol Retention Characteristics of Barrier Devices. Anesthesiology, 2021,134(1):61-71. doi: 10.1097/ALN.0000000000003597.
doi: 10.1097/ALN.0000000000003597 URL |
[70] |
Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol, 2021,22:1-18. doi: 10.1038/s41579-021-00535-6.
doi: 10.1038/s41579-021-00535-6 |
[71] |
Lai ACK, Nunayon SS, Tan TF, et al. A pilot study on the disinfection efficacy of localized UV on the flushing-generated spread of pathogens. J Hazard Mater, 2018,358:389-396. doi: 10.1016/j.jhazmat.2018.07.003.
doi: 10.1016/j.jhazmat.2018.07.003 URL |
[72] |
Nardell EA, Nathavitharana RR. Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. JAMA, 2020,324(2):141-142. doi: 10.1001/jama.2020.7603.
doi: 10.1001/jama.2020.7603 pmid: 32478797 |
[73] |
Zhang J. Integrating IAQ control strategies to reduce the risk of asymptomatic SARS CoV-2 infections in classrooms and open plan offices. Science and Technology for the Built Environment, 2020,26(8):1013-1018. doi: 10.1080/23744731.2020.1794499.
doi: 10.1080/23744731.2020.1794499 URL |
[1] | Yang Yan, Dong Wen, Chen Jianjun, Zhang Yu. Epidemiologic characteristics of pulmonary tuberculosis in Zhuxi County, Shiyan City (2014-2023) [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 40-45. |
[2] | Liao Ying, Pang Yan, Zhao Jing, He Gaoqin, You Maolin, Wang Lei. Analysis on the reporting and case finding delay characteristics of pulmonary tuberculosis patients in Liangping District, Chongqing from 2018 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 8-13. |
[3] | Lu Kunyun, Tang Shunding, Wu Wei, Li Ling, Yang Rui, Xu Lin. Analysis of tuberculosis case detection in key areas of Yunnan Province during 2015—2022 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 415-421. |
[4] | Chen Wei, Sun Huijuan, Zhao Yanlin. Construction and prospects of tuberculosis prevention and control service system in China during the new era [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 95-100. |
[5] | Chen Muxing, Fan Xinxin, Chen Xiaohong, Lin Youfei, Huang Mingxiang, Chen Lizhou, Wu Di. Research progress of the clinical value of applying T lymphocyte subsets examination in COVID-19 patients [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 343-346. |
[6] | WU Jing. Four-wheel-driven accelerated prevention and control of chronic pulmonary diseases in the post-epidemic era [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 202-204. |
[7] | LI Gang, XIE Jian-ping. Progresses on the SARS-CoV-2 RNA-dependent RNA polymerase and potential anti-SARS-CoV-2 inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(1): 6-10. |
[8] | Jing-wen. LAI. Analysis on the effectiveness of different tuberculosis prevention and control service system models in Shanghai and Shenzhen [J]. Journal of Tuberculosis and Lung Health, 2019, 8(1): 24-28. |
[9] | Bao-jiang WEN,Xiao-dong DENG,Guang-yong FENG,Wen-pei. WEN. Analysis on the effectiveness of different tuberculosis prevention and control system models in Guangdong Province [J]. Journal of Tuberculosis and Lung Health, 2019, 8(1): 19-23. |
[10] | Zhi ZHANG,Wei WANG,Guo-qin ZHANG,Wen-liang WEI. Analysis of tuberculosis case-finding and incidence in prisoners in Tianjin Prison System during 2011 to 2017 [J]. Journal of Tuberculosis and Lung Health, 2018, 7(4): 275-278. |
[11] | Xiao-rong LI,Yan-yong FU,Ming-jie YANG. Epidemiological investigation on an aggregation outbreak of tuberculosis in floating population in a company in Tianjin [J]. Journal of Tuberculosis and Lung Health, 2018, 7(4): 261-267. |
[12] | GAO Qian;YANG Chongguang. Recent Transmission and Control of Tuberculosis in China [J]. Journal of Tuberculosis and Lung Health, 2017, 6(3): 193-198. |
[13] | HU Dong-mei, HOU Yue-yun, SONG Yu-dan, XIONG Yong-chao,GENG Meng-jie, HE Guang-xue.. The analysis of using two methods to detect latent tuberculosis infection among 227 village doctors [J]. Journal of Tuberculosis and Lung Health, 2014, 3(3): 148-151. |
[14] | YAN Dai-qin, SONG Yu-dan, WANG Ya-li, GAO Fei, REN Li-ping, CHEN Liang, HE Guang-xue.. Analysis of latent tuberculosis infection among village and township hospital doctors in Hanggin Rear Banner of Inner Mongolia [J]. Journal of Tuberculosis and Lung Health, 2014, 3(2): 100-103. |
[15] | LU Li-ping, HONG Jian-jun, JIN Xiao-ping, SHEN Hong-ying. Analysis of pulmonary tuberculosis patients detection from health examination in Songjiang district [J]. Journal of Tuberculosis and Lung Health, 2013, 2(3): 181-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||