Journal of Tuberculosis and Lung Disease ›› 2020, Vol. 1 ›› Issue (3): 226-232.doi: 10.3969/j.issn.2096-8493.2020.03.005
• Original Articles • Previous Articles Next Articles
Received:
2020-11-13
Online:
2020-12-30
Published:
2021-01-05
Contact:
LU Shui-hua
E-mail:tubercle@shphc.org.cn
YANG Yang, LU Shui-hua. Adult-onset mendelian susceptibility to mycobacterial disease: a case report and literature review[J]. Journal of Tuberculosis and Lung Disease , 2020, 1(3): 226-232. doi: 10.3969/j.issn.2096-8493.2020.03.005
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2020.03.005
来源 | 性 别 | 遗传 方式 | 发病 年龄 (岁) | 临床表现 | 接种 BCG | 病原体 | 缺陷基因及突变 | 侵犯组织 | 有效治疗 | 预后 |
---|---|---|---|---|---|---|---|---|---|---|
本例 | 男 | 完全性AR | 18 | 咳嗽,结节红斑,关节痛,发热,腹胀,体质量下降 | 是 | 龟分枝杆菌,戈登分枝杆菌 | TYK2(G997A,C10T) | 淋巴结,肺,皮肤,关节 | 丙种球蛋白,地塞米松,rhIFN-γ,抗生素 | 良好 |
Sakai等[ | 男 | 完全性AR | 30 | 淋巴结肿大 | 不详 | 鸟分枝杆菌 | IL12RB1(R213W) | 淋巴结 | 抗生素,rhIFN-γ | 不详 |
Arend等[ | 女 | 部分性AD | 25 | 淋巴结肿大,关节痛,肌痛,结节红斑 | 是 | 鸟分枝杆菌 | IFNGR1(818del4) | 淋巴结,骨,关节,腱鞘,肌肉,皮肤 | 抗生素 | 良好 |
女 | 部分性AD | 29 | 淋巴结肿大,关节痛,体质量下降 | 不详 | 鸟分枝杆菌 | IFNGR1(818del4) | 淋巴结,骨,关节 | 抗生素,rhIFN-γ | 良好 | |
女 | 部分性AD | 24 | 淋巴结肿大,结节红斑 | 是 | 亚洲分枝杆菌 | IFNGR1(818del4) | 淋巴结,骨,皮肤 | 抗生素,rhIFN-γ | 良好 | |
Remiszewski等[ | 女 | 部分性AR | 20 | 骨痛,发热,全身乏力,咳嗽,咳痰 | 是 | 鸟分枝杆菌 | IFNGR1(I87T) | 骨,肺,脑 | 抗生素, rhIFN-γ | 良好 |
Tabarsi等[ | 男 | 完全性AR | 30 | 淋巴结肿大,咳嗽,体质量下降,腹泻 | 是 | 结核分枝杆菌(耐药) | IL12RB1(T355del) | 淋巴结,肺,消化道 | 抗生素,rhIFN-γ | 死亡 |
Schejbel等[ | 男 | 完全性AR | 47 | 腹痛,腹泻,体质量下降 | 是 | 布兰德分枝杆菌 | IL12RB1(R283X) | 消化道 | 抗生素,rhIFN-γ | 良好 |
Hsu等[ | 男 | 部分性XR P | 34 | 淋巴结肿大,体质量下降,肠梗阻 | 不详 | 鸟分枝杆菌 | NEMO IKBKG 剪接突变 | 皮肤,消化道 | 抗生素,rhIFN-γ | 良好 |
男 | 部分性XR | 26 | 体质量下降 | 不详 | 鸟分枝杆菌 | NEMO IKBKG 剪接突变 | 淋巴结,肺,血液 | 抗生素,rhIFN-γ | 死亡 |
[1] |
Bustamante J. Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet, 2020,139(6/7):993-1000. doi: 10.1007/s00439-020-02120-y.
doi: 10.1007/s00439-020-02120-y URL |
[2] |
Boisson-Dupuis S, Bustamante J, El-Baghdadi J, et al. Inherited and acquired immunodeficiencies underlying tuberculosis in childhood. Immunol Rev, 2015,264(1):103-120. doi: 10.1111/imr.12272.
URL pmid: 25703555 |
[3] |
Shabani M, Aleyasin S, Kashef S, et al. A Novel Recessive Mutation of Interferon-γ Receptor 1 in a Patient with Mycobacterium tuberculosis in Bone Marrow Aspirate. J Clin Immunol, 2019,39(2):127-130. doi: 10.1007/s10875-019-00595-7.
URL pmid: 30719685 |
[4] |
Bustamante J, Boisson-Dupuis S, Abel L, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol, 2014,26(6):454-470. doi: 10.1016/j.smim.2014.09.008.
doi: 10.1016/j.smim.2014.09.008 URL pmid: 25453225 |
[5] |
Pöyhönen L, Bustamante J, Casanova JL, et al. Life-Threate-ning Infections Due to Live-Attenuated Vaccines: Early Mani-festations of Inborn Errors of Immunity. J Clin Immunol, 2019,39(4):376-390. doi: 10.1007/s10875-019-00642-3.
doi: 10.1007/s10875-019-00642-3 URL pmid: 31123910 |
[6] |
Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol, 2002,20:581-620. doi: 10.1146/annurev.immunol.20.081501.125851.
doi: 10.1146/annurev.immunol.20.081501.125851 URL pmid: 11861613 |
[7] |
Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med, 1996,335(26):1941-1949. doi: 10.1056/NEJM199612263352602.
doi: 10.1056/NEJM199612263352602 URL pmid: 8960473 |
[8] |
Rosain J, Kong XF, Martinez-Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014—2018 update. Immunol Cell Biol, 2019,97(4):360-367. doi: 10.1111/imcb.12210.
doi: 10.1111/imcb.12210 URL pmid: 30264912 |
[9] |
Sakai T, Matsuoka M, Aoki M, et al. Missense mutation of the interleukin-12 receptor beta1 chain-encoding gene is associated with impaired immunity against Mycobacterium avium complex infection. Blood, 2001,97(9):2688-2694. doi: 10.1182/blood.v97.9.2688.
doi: 10.1182/blood.v97.9.2688 URL pmid: 11313259 |
[10] |
Arend SM, Janssen R, Gosen JJ, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-gamma receptor. Neth J Med, 2001,59(3):140-151. doi: 10.1016/s0300-2977(01)00152-8.
URL pmid: 11583830 |
[11] |
Remiszewski P, Roszkowska-Sliz B, Winek J, et al. Disseminated Mycobacterium avium infection in a 20-year-old female with partial recessive IFNgammaR1 deficiency. Respiration, 2006,73(3):375-378. doi: 10.1159/000088682.
doi: 10.1159/000088682 URL pmid: 16195661 |
[12] |
Tabarsi P, Marjani M, Mansouri N, et al. Lethal tuberculosis in a previously healthy adult with IL-12 receptor deficiency. J Clin Immunol, 2011,31(4):537-539. doi: 10.1007/s10875-011-9523-9.
doi: 10.1007/s10875-011-9523-9 URL |
[13] |
Schejbel L, Rasmussen EM, Kemp HB, et al. Combined IL-12 receptor and IgA deficiency in an adult man intestinally infested by an unknown, non-cultivable mycobacterium. Scand J Immunol, 2011,74(6):548-553. doi: 10.1111/j.1365-3083.2011.02603.x.
doi: 10.1111/j.1365-3083.2011.02603.x URL |
[14] |
Hsu AP, Zerbe CS, Foruraghi L, et al. IKBKG (NEMO) 5' Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clin Infect Dis, 2018,67(3):456-459. doi: 10.1093/cid/ciy186.
doi: 10.1093/cid/ciy186 URL pmid: 29534156 |
[15] |
Roy E, Stavropoulos E, Brennan J, et al. Therapeutic efficacy of high-dose intravenous immunoglobulin in Mycobacterium tuberculosis infection in mice. Infect Immun, 2005,73(9):6101-6109. doi: 10.1128/IAI.73.9.6101-6109.2005.
doi: 10.1128/IAI.73.9.6101-6109.2005 URL pmid: 16113331 |
[16] |
Rosain J, Oleaga-Quintas C, Deswarte C, et al. A Variety of Alu-Mediated Copy Number Variations Can Underlie IL-12Rβ1 Deficiency. J Clin Immunol, 2018,38(5):617-627. doi: 10.1007/s10875-018-0527-6.
doi: 10.1007/s10875-018-0527-6 URL pmid: 29995221 |
[17] |
de Vor IC, van der Meulen PM, Bekker V, et al. Deletion of the entire interferon-γ receptor 1 gene causing complete deficiency in three related patients. J Clin Immunol, 2016,36(3):195-203. doi: 10.1007/s10875-016-0244-y.
URL pmid: 26931784 |
[18] |
Blauvelt A, Lebwohl MG, Bissonnette R. IL-23/IL-17A Dysfunction Phenotypes Inform Possible Clinical Effects from Anti-IL-17A Therapies. J Invest Dermatol, 2015,135(8):1946-1953. doi: 10.1038/jid.2015.144.
doi: 10.1038/jid.2015.144 URL pmid: 25972190 |
[19] |
Ramirez-Alejo N, Santos-Argumedo L. Innate defects of the IL-12/IFN-γ axis in susceptibility to infections by mycobacteria and salmonella. J Interferon Cytokine Res, 2014,34(5):307-317. doi: 10.1089/jir.2013.0050.
doi: 10.1089/jir.2013.0050 URL pmid: 24359575 |
[20] |
Dotta L, Vairo D, Giacomelli M, et al. Transient Decrease of Circulating and Tissular Dendritic Cells in Patients With Mycobacterial Disease and With Partial Dominant IFNγR1 Deficiency. Front Immunol, 2020,11:1161. doi: 10.3389/fimmu.2020.01161.
doi: 10.3389/fimmu.2020.01161 URL pmid: 32676075 |
[21] |
Reed B, Dolen WK. The Child with Recurrent Mycobacterial Disease. Curr Allergy Asthma Rep, 2018,18(8):44. doi: 10.1007/s11882-018-0797-3.
doi: 10.1007/s11882-018-0797-3 URL pmid: 29936646 |
[22] |
Zonana J, Elder ME, Schneider LC, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet, 2000,67(6):1555-1562. doi: 10.1086/316914.
doi: 10.1086/316914 URL pmid: 11047757 |
[23] |
Döffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet, 2001,27(3):277-285. doi: 10.1038/85837.
doi: 10.1038/85837 URL pmid: 11242109 |
[24] |
Kreins AY, Ciancanelli MJ, Okada S, et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med, 2015,212(10):1641-1662. doi: 10.1084/jem.20140280.
doi: 10.1084/jem.20140280 URL pmid: 26304966 |
[25] |
Nemoto M, Hattori H, Maeda N, et al. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia. Sci Rep, 2018,8(1):6956. doi: 10.1038/s41598-018-25260-8.
URL pmid: 29725107 |
[26] |
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol, 2018,3(30):eaau8714. doi: 10.1126/sciimmunol.aau8714.
doi: 10.1126/sciimmunol.aau8714 URL pmid: 30578352 |
[27] |
Martínez-Barricarte R, Markle JG, Ma CS, et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol,2018,3(30):eaau6759. doi:10.1126/sciimmunol.aau6759.
doi: 10.1126/sciimmunol.aau6759 URL pmid: 30578351 |
[28] |
Wu P, Chen S, Wu B, et al. A TYK2 Gene Mutation c.2395G>A Leads to TYK2 Deficiency: A Case Report and Literature Review. Front Pediatr, 2020,8:253. doi: 10.3389/fped.2020.00253.
doi: 10.3389/fped.2020.00253 URL pmid: 32537443 |
[29] |
Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol, 2006,18(6):347-361. doi: 10.1016/j.smim.2006.07.010.
doi: 10.1016/j.smim.2006.07.010 URL pmid: 16997570 |
[30] |
Altare F, Durandy A, Lammas D, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science, 1998,280(5368):1432-1435. doi: 10.1126/science.280.5368.1432.
doi: 10.1126/science.280.5368.1432 URL pmid: 9603732 |
[31] |
Jouanguy E, Lamhamedi-Cherradi S, Altare F, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest, 1997,100(11):2658-2664. doi: 10.1172/JCI119810.
doi: 10.1172/JCI119810 URL pmid: 9389728 |
[32] |
de Beaucoudrey L, Samarina A, Bustamante J, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore), 2010,89(6):381-402. doi: 10.1097/MD.0b013e3181fdd832.
doi: 10.1097/MD.0b013e3181fdd832 URL |
[33] |
Dorman SE, Picard C, Lammas D, et al. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet, 2004,364(9451):2113-2121. doi: 10.1016/S0140-6736(04)17552-1.
doi: 10.1016/S0140-6736(04)17552-1 URL pmid: 15589309 |
[1] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[2] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[3] | Li Xiaoxue, Xiao Xiao, Xu Chunhua, Dong Shulan, Wang Shanshan, Cao Jiayi, Wu Zheyuan, Hu Yi, Shen Xin. The prevalence of latent tuberculosis infection among close contacts of active tuberculosis patients: a Meta-analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 404-414. |
[4] | Su XingYue, Wang Beilei, Ma Xiang. Single nucleotide polymorphisms and related genes in Chinese children with type 2 inflammatory asthma [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 370-375. |
[5] | Yuan Yonglong, Li Huimei, Ma Dedong. Metagenomic next-generation sequencing assisted in the diagnosis of psittacosis: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 113-119. |
[6] | National Center of Medical Quality Control for Respiratory Diseases , Tuberculosis Branch of Chinese Medical Association , Tuberculosis Control Branch of Chinese Antituberculosis Association , China⁃Japan Friendship Hospital . Clinical practice guidelines for early detection of pulmonary tuberculosis in general medical facilities [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 1-14. |
[7] | Wang Yuxiang, Hu Qiumeng, Zheng Junfeng, Deng Guofang, Zhang Peize. Analysis of clinical characteristics and prognosis of pulmonary diseases caused by Mycobacterium kansassi and Mycobacterium intracellular [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 480-485. |
[8] | Lin Rongmei, Lu Nihong. Current status of myocardial injury associated with the coronavirus disease 2019 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 493-498. |
[9] | Cui Yanan, Chen Yan. Programmed cell death and its research progress in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 397-406. |
[10] | Gao Wenwan, Guo Jianqiong, Li Tongxin, Han Mei, Yan Xiaofeng, Yang Song, Tang Shenjie. The interpretation of the key points of the Expert Consensus on Immunotherapy for Tuberculosis (2022 edition) [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 194-197. |
[11] | Lu Yu, Wang Xiaodong. Research progress of non-drug therapy for chronic obstructive pulmonary disease-related fatigue [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 240-245. |
[12] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
[13] | Yang Cui, Li Yuan, He Zhentao, Xu Jiaxing, Yu Xiaoying, Lu Chengyu, Chen Dehui, Zhai Yingying. Primary ciliary dyskinesia for DNAAF3 gene mutations: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 147-152. |
[14] | Fan Mingkuan, Zhang Hui. Interpretation of the Evidence-based Guidelines for Active Screening of Pulmonary Tuberculosis in Chinese Communities [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 1-4. |
[15] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||