Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (5): 489-494.doi: 10.19983/j.issn.2096-8493.2024107
• Review Articles • Previous Articles
Shi Xu, Chen Ruchong, Li Jing()
Received:
2024-06-24
Online:
2024-10-20
Published:
2024-10-14
Contact:
Li Jing
E-mail:lijing@gird.cn
Supported by:
CLC Number:
Shi Xu, Chen Ruchong, Li Jing. Research progress on the concept discrimination and treatment of type 2 inflammation in asthma[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(5): 489-494. doi: 10.19983/j.issn.2096-8493.2024107
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024107
通用名 | 靶点 | 适用人群 | 生物标志物指导临床应用 | 推荐 |
---|---|---|---|---|
奥马珠单抗 (omalizumab) | IgE | 6岁及以上儿童和成人的中、重度过敏性患者 | 基线血清总IgE水平在30~1300IU/ml(6~12岁)和30~700IU/ml(12岁以上),可以选择抗IgE抗体 | 中国:√ GINA:√ |
瑞替珠单抗 (reslizumab) | IL-5 | 18岁及以上成人重度EOS型患者 | 血EOS≥150个/μl或300个/μl可作为使用抗IL-5或IL-5R抗体的指征 | 中国:√ GINA:√ |
美泊利珠单抗 (mepolizumab) | IL-5 | 6岁及以上儿童和成人重度EOS型患者 | 中国:√ GINA:√ | |
本瑞利珠单抗 (benralizumab) | IL-5R | 12岁及以上青少年和成人重度EOS型患者 | 中国:√ GINA:√ | |
度普利尤单抗 (dupilumab) | IL-4R | 6岁及以上儿童和成人重度EOS型/2型患者或OCS依赖型患者 | 基线血清总IgE水平≥150个/μl且≤1500个/μl,或FeNO≥25ppb | 中国:√ GINA:√ |
特泽鲁单抗 (tezepelumab) | TSLP | 12岁及以上青少年和成人重度患者 | 血EOS或FeNO升高 | 中国:× GINA:√ |
[1] | Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention(2023 Update). Fontana:Global Initiative for Asthma, 2023. |
[2] | 钱雪娇, 蒋萍. 2型炎症型哮喘发病机制. 中华临床免疫和变态反应杂志, 2022, 16(6):629-635. doi:10.3969/j.issn.1673-8705.2022.06.011. |
[3] | Santini G, Mores N, Malerba M, et al. Dupilumab for the treatment of asthma. Expert Opin Investig Drugs, 2017, 26(3):357-366. doi:10.1080/13543784.2017.1282458. |
[4] | 杜文, 刘春涛. 支气管哮喘的表型. 中华临床免疫和变态反应杂志, 2022, 16(3):287-291. doi:10.3969/j.issn.1673-8705.2022.03.011. |
[5] | Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol, 2019, 56(2):219-233. doi:10.1007/s12016-018-8712-1. |
[6] |
Bousquet J, Hellings PW, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology. J Allergy Clin Immunol, 2019, 143(3):864-879. doi:10.1016/j.jaci.2018.08.049.
pmid: 30273709 |
[7] | Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention(2019 Update). Fontana:Global Initiative for Asthma, 2019. |
[8] | Canonica GW, Blasi F, Crimi N, et al. Defining type 2 asthma and patients eligible for dupilumab in Italy: a biomarker-based analysis. Clin Mol Allergy, 2021, 19(1):5. doi:10.1186/s12948-021-00146-9. |
[9] | Deng Z, Jin M, Ou C, et al. Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies. Chin Med J (Engl), 2023, 136(2):230-232. doi:10.1097/CM9.0000000000002556. |
[10] |
Rackemann FM. A working classification of asthma. Am J Med, 1947, 3(5):601-606. doi:10.1016/0002-9343(47)90204-0.
pmid: 20269240 |
[11] | Wenzel SE, Szefler SJ, Leung DY, et al. Bronchoscopic evalua-tion of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med, 1997, 156(3 Pt 1): 737-743. doi:10.1164/ajrccm.156.3.9610046. |
[12] |
Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet, 2006, 368(9537): 804-813. doi:10.1016/S0140-6736(06)69290-8.
pmid: 16935691 |
[13] | Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med, 2010, 181(4):315-323. doi:10.1164/rccm.200906-0896OC. |
[14] | Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med, 2017, 377(10):965-976. doi:10.1056/NEJMra1608969. |
[15] |
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol, 2019, 144(1):1-12. doi:10.1016/j.jaci.2019.05.031.
pmid: 31277742 |
[16] |
Cloutier MM, Dixon AE, Krishnan JA, et al. Managing Asthma in Adolescents and Adults: 2020 Asthma Guideline Update From the National Asthma Education and Prevention Program. JAMA, 2020, 324(22):2301-2317. doi:10.1001/jama.2020.21974.
pmid: 33270095 |
[17] | 中华医学会变态反应学分会. 2型炎症性疾病机制及靶向治疗专家共识. 中华医学杂志, 2022, 102(42): 3349-3373. doi:10.3760/cma.j.cn112137-20220628-01431. |
[18] | Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol, 2023, 14:1149203. doi:10.3389/fimmu.2023.1149203. |
[19] |
Han YY, Zhang X, Wang J, et al. Multidimensional Assessment of Asthma Identifies Clinically Relevant Phenotype Overlap: A Cross-Sectional Study. J Allergy Clin Immunol Pract, 2021, 9(1):349-362.e18. doi:10.1016/j.jaip.2020.07.048.
pmid: 32791248 |
[20] |
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med, 2012, 18(5):716-725. doi:10.1038/nm.2678.
pmid: 22561835 |
[21] | Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med, 2017, 377(10):965-976. doi:10.1056/NEJMra1608969. |
[22] |
Fitzsimmons CM, Falcone FH, Dunne DW, et al. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol, 2014, 5:61. doi:10.3389/fimmu.2014.00061.
pmid: 24592267 |
[23] | Busse WW, Kraft M, Rabe KF, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur Respir J, 2021, 58(2):2003393. doi:10.1183/13993003.03393-2020. |
[24] |
Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med, 2013, 19(8):977-979. doi:10.1038/nm.3300.
pmid: 23921745 |
[25] |
Akar-Ghibril N, Casale T, Custovic A, et al. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract, 2020, 8(2):429-440. doi:10.1016/j.jaip.2019.11.008.
pmid: 32037107 |
[26] |
Hazan G, Eubanks A, Gierasch C, et al. Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. J Immunol, 2022, 208(6):1467-1482. doi:10.2147/JIR.S269297.
pmid: 35173037 |
[27] |
Runnstrom M, Pitner H, Xu J, et al. Utilizing Predictive Inflammatory Markers for Guiding the Use of Biologicals in Severe Asthma. J Inflamm Res, 2022, 15:241-249. doi:10.2147/JIR.S269297.
pmid: 35068937 |
[28] | 中国医药教育协会慢性气道疾病专业委员会, 中国哮喘联盟. 呼出气一氧化氮检测及其在气道疾病诊治中应用的中国专家共识. 中华医学杂志, 2021, 101(38): 3092-3114. doi:10.3760/cma.j.cn112137-20210210-00408. |
[29] | Nair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asth ma with sputum eosinophilia. N Engl J Med, 2009, 360(10):985-993. doi:10.1056/NEJMoa0805435. |
[30] | Escamilla-Gil JM, Fernandez-Nieto M, Acevedo N. Understanding the Cellular Sources of the Fractional Exhaled Nitric Oxide (FeNO) and Its Role as a Biomarker of Type 2 Inflammation in Asthma. Biomed Res Int, 2022, 2022:5753524. doi:10.1155/2022/5753524. |
[31] | Vitte J, Vibhushan S, Bratti M, et al. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med Princ Pract, 2022, 31(6): 501-515. doi:10.1159/000527481. |
[32] | Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells, 2022, 11(17):2764. doi:10.3390/cells11172764. |
[33] |
Zhang Q, Fu X, Wang C, et al. Severe eosinophilic asthma in Chinese C-BIOPRED asthma cohort. Clin Transl Med, 2022, 12(2): e710. doi:10.1002/ctm2.710.
pmid: 35184418 |
[34] | McGregor MC, Krings JG, Nair P, et al. Role of Biologics in Asthma. Am J Respir Crit Care Med, 2019, 199(4):433-445. doi:10.1164/rccm.201810-1944CI. |
[35] | Fajt ML, Wenzel SE. Development of New Therapies for Severe Asthma. Allergy Asthma Immunol Res, 2017, 9(1):3-14. doi:10.4168/aair.2017.9.1.3. |
[36] |
Gandhi NA, Bennett BL, Graham NM, et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov, 2016, 15(1):35-50. doi:10.1038/nrd4624.
pmid: 26471366 |
[37] | Vatrella A, Maglio A, Pellegrino S, et al. Phenotyping severe asthma: a rationale for biologic therapy. Expert Rev Precis Med Drug Dev, 2020, 5(4): 265-274. doi:10.1080/23808993.2020.1776106. |
[38] | Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified. Nat Rev Immunol, 2010, 10(4):225-235. doi:10.1038/nri2735. |
[39] | Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan. Eur Respir J, 2022, 60(3):2102288. doi:10.1183/13993003.02288-2021. |
[40] | Popovic'-Grle S, Štajduhar A, Lampalo M, et al. Biomarkers in Different Asthma Phenotypes. Genes (Basel), 2021, 12(6):801. doi:10.3390/genes12060801. |
[41] | Pembrey L, Barreto ML, Douwes J, et al. Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open Res, 2018, 4(3):00013-2018. doi:10.1183/23120541.00013-2018. |
[1] | Xue Min, Wei Xiaoling, Liu Miao, Wang Jing, Zhang Yun, Ma Xiang. Analysis of factors affecting the onset age of asthma in children [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 468-475. |
[2] | Su XingYue, Wang Beilei, Ma Xiang. Single nucleotide polymorphisms and related genes in Chinese children with type 2 inflammatory asthma [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 370-375. |
[3] | Nierjiamali·Mutalifu, Maliya·Yasheng, Kelibiena·Tuerxun. Research progress on clinical characteristics and targeted therapy of airway inflammation phenotype in bronchial asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 506-510. |
[4] | Guo Jing, Lou Nannan, Li Jialin, Zhang Hua, Ma Xiang. Research progress of chest tightness variant asthma and comparison with typical asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 413-418. |
[5] | Meng Weiwei, Zeng Huihui, Chen Yan. Research progress in the application of peak inspiratory flow rate measurement in chronic airway diseases [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 391-396. |
[6] | Hu Tingting, Chang Chun. The role of ceramide and ceramide synthetase in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 164-168. |
[7] | Wang Zhongzhao, Tang Hao. Research progress of airway remodeling mechanism in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 158-163. |
[8] | Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin. Research progress of targeting bronchial epithelium in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 153-157. |
[9] | Yan Jinyan, Li Xiaomin, Ma Xiang. Research progress on the mechanism of there relationship between asthma and pertussisin children [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 78-84. |
[10] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[11] | Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 328-333. |
[12] | ZHOU Jie, QI Qing, CHEN Long, WU Rui, SHI Guang-shuo, DU He, LIU Ya-xin, XIONG Lei, WU Zhi-le, WU Guo-xia. Investigation of knowledge of Global Initiative for Asthma in physicians [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 189-192. |
[13] | Rena·Abulaiti, Kelibiena·Tuerxun, Dilinuer·Wufuer. Research progress on correlation between bronchial asthma and psychological disorders [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 285-288. |
[14] | ZHANG Hong-hui,HUANG Wei.. Clinical effect of inhaled budesonide suspension for the treatment of asthma in children [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 188-191. |
[15] | Tong ZHANG. Analysis of clinical treatment outcomes in 18 cases with severe bronchial asthma [J]. Journal of Tuberculosis and Lung Health, 2018, 7(1): 77-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||