Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (5): 484-488.doi: 10.19983/j.issn.2096-8493.2024097
• Review Articles • Previous Articles Next Articles
Received:
2024-05-30
Online:
2024-10-20
Published:
2024-10-14
Contact:
Zhan Lu
E-mail:273427705@qq.com
Supported by:
CLC Number:
Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(5): 484-488. doi: 10.19983/j.issn.2096-8493.2024097
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024097
[1] |
Besharat ZM, Trocchianesi S, Verrienti A, et al. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest, 2023, 46(12):2583-2599. doi:10.1007/s40618-023-02115-2.
pmid: 37286863 |
[2] | Vanhie A, Caron E, Vermeersch E, et al. Circulating micro-RNAs as Non-Invasive Biomarkers in Endometriosis Diagnosis-A Systematic Review. Biomedicines, 2024, 12(4):888. doi:10.3390/biomedicines12040888. |
[3] | McAlpine SM, Roberts SE, Hargreaves BKV, et al. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol, 2023, 50(2):227-235. doi:10.3899/jrheum.220160. |
[4] |
Li R, Li D, Wang H, et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther, 2022, 13(1):149. doi:10.1186/s13287-022-02823-1.
pmid: 35395782 |
[5] | 张益源, 伊正君, 付玉荣. microRNA在结核分枝杆菌抗细胞自噬作用中的研究进展. 生物化学与生物物理进展, 2019, 46(1):43-50. doi:10.16476/j.pibb.2018.0133. |
[6] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2021, 78(4):1233-1261. doi:10.1007/s00018-020-03656-y.
pmid: 33057840 |
[7] | Wang X, Pham A, Kang L, et al. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics, 2021, 14(1):16. doi:10.3390/pharmaceutics14010016. |
[8] | Huang H, Zhu J, Fan L, et al. MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int, 2019, 2019:2045915. doi:10.1155/2019/2045915. |
[9] | Xu P, Palmer LE, Lechauve C, et al. Regulation of gene expression by miR-144/ 451 during mouse erythropoiesis. Blood, 2019, 133(23):2518-2528. doi:10.1182/blood.2018854604. |
[10] |
Kretov DA, Shafik AM, Cifuentes D. Assessing miR-451 Activity and Its Role in Erythropoiesis. Methods Mol Biol, 2018, 1680:179-190. doi:10.1007/978-1-4939-7339-2_12.
pmid: 29030849 |
[11] | 侯涛, 戴素红, 赵广超, 等, 储存红细胞代谢产物持续影响巨噬细胞功能的初步研究. 临床血液学杂志, 2024, 37(6):384-389. doi:10.13201/j.issn.1004-2806.2024.06.003. |
[12] | Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015, 264(1):220-232. doi:10.1111/imr.12268. |
[13] | Liu X, Zhang D, Wang H, et al. MiR-451a enhances the phagocytosis and affects both M1 and M2 polarization in macrophages. Cell Immunol, 2021, 365(7):104377. doi:10.1016/j.cellimm.2021.104377. |
[14] |
Motamedi M, Razmkhah F, Rezakhani L, et al. Altered Expression of CD44, SIRT1, CXCR4, miR-21, miR-34a, and miR-451 Genes in MKN-45 Cell Line After Docetaxel Treatment. J Gastrointest Cancer, 2020, 51(2):520-526. doi:10.1007/s12029-019-00274-1.
pmid: 31273630 |
[15] | 刘浩然. miRNA-451a及靶基因在结核病发病机制中的作用及诊断价值的研究. 北京: 北京市结核病胸部肿瘤研究所, 2019. |
[16] | 尚晓倩, 赵慧, 马秀敏, 等. microRNA与结核分枝杆菌感染的致病机制研究进展. 中华医院感染学杂志, 2019, 29(3):477-480. doi:10.11816/cn.ni.ni.2019-174265. |
[17] |
Zmonarski SC, Banasik M, Madziarska K, et al. The role of toll-like receptors in multifactorial mechanisms of early and late renal allotransplant injury, with a focus on the TLR4 receptor and mononuclear cells. Adv Clin Exp Med, 2019, 28(7):981-987. doi:10.17219/acem/94139.
pmid: 30968609 |
[18] | Ghaffarpour S, Foroutan A, Askari N, et al. SP-A and TLR4 localization in lung tissue of SM-exposed patients. Int Immunopharmacol, 2020, 80:105936. doi:10.1016/j.intimp.2019.105936. |
[19] | Sepehri Z, Kiani Z, Kohan F, et al. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med, 2019, 50(2):117-129. doi:10.1093/labmed/lmy047. |
[20] | Han L, Tieliwaerdi N, Li X. METTL3-deficiency m6A-dependently degrades MALAT1 to suppress NLRP3-mediated pyroptotic cell death and inflammation in Mycobacterium tuberculosis (H37Ra strain)-infected mouse macrophages. Tuberculosis (Edinb), 2024, 146:102502. doi:10.1016/j.tube.2024.102502. |
[21] | Wu S, Liu X, Chen L, et al. Polymorphisms of TLR2, TLR4 and TOLLIP and tuberculosis in two independent studies. Biosci Rep, 2020, 40(8):BSR20193141. doi:10.1042/bsr20193141. |
[22] | Shabariah R, Hatta M, Idris I, et al. Comparison TLR2 and TLR4 serum levels in children with pulmonary and extrapulmonary tuberculosis with and without a Bacillus Calmette-Guérin (BCG) scar. J Clin Tuberc Other Mycobact Dis, 2021, 25(4):100272. doi:10.1016/j.jctube.2021.100272. |
[23] |
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M.tuberculosis. Clin Exp Immunol, 2020, 199(2):230-243. doi:10.1111/cei.13388.
pmid: 31631328 |
[24] | Wei X, Yi X, Liu J, et al. Circ-phkb promotes cell apoptosis and inflammation in LPS-induced alveolar macrophages via the TLR4/MyD88/NF-kB/CCL2 axis. Respir Res, 2024, 25(1):62. doi:10.1186/s12931-024-02677-6. |
[25] | Roedig H, Nastase MV, Frey H, et al. Biglycan is a new high-affinity ligand for CD 14 in macrophages. Matrix Biol, 2019, 77(3):4-22. doi:10.1016/j.matbio.2018.05.006. |
[26] |
Gugliandolo E, Fusco R, Ginestra G, et al. Involvement of TLR4 and PPAR-α Receptors in Host Response and NLRP 3 Inflammasome Activation, Against Pulmonary Infection With Pseudomonas Aeruginosa. Shock, 2019, 51(2):221-227. doi:10.1097/SHK.0000000000001137.
pmid: 29547450 |
[27] | Chen J, Tang Z, Chen Z, et al. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord, 2023, 23(1):122. doi:10.1186/s12872-023-03124-y. |
[28] | Yu J, Tang L, Yang L, et al. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. Phytomedicine, 2024, 123:155123. doi:10.1016/j.phymed.2023.155123. |
[29] | Huang Z, Song S, Zhang D, et al. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol, 2023, 45(1):61-72. doi:10.1080/08923973.2022.2115924. |
[30] |
Nakashima M, Ishikawa K, Fugiwara A, et al. miR-451a levels rather than human papillomavirus vaccine administration is associated with the severity of murine experimental autoimmune encephalomyelitis. Sci Rep, 2021, 11(1):9369. doi:10.1038/s41598-021-88842-z.
pmid: 33931700 |
[31] | Pahari S, Negi S, Aqdas M, et al. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy, 2020, 16(6):1021-1043. doi:10.1080/15548627.2019.1658436. |
[32] | 曹建, 张媛梅, 黄红梅, 等. miR-451a调控TLR4信号通路参与结核分枝杆菌感染机制的研究. 中国病原生物学杂志, 2022, 17(9):1077-1081. doi:10.13350/j.cjpb.220919. |
[33] |
Sun X, Zhang H. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4. Cell Tissue Res, 2018, 374(3):487-495. doi:10.1007/s00441-018-2898-7.
pmid: 30069596 |
[34] | 张会强, 文政芳, 张冬杰, 等. IFN-γ及血清炎症因子水平变化与肺结核发病相关性及作用机制分析. 中华医院感染学杂志, 2019, 29(2):184-187. doi:10.11816/cn.ni.2019-174186. |
[35] | 颜月, 李桃, 方蕾. miR-144/451在呼吸系统疾病中的研究进展. 医学综述, 2020, 26 (11):2117-2121,2127. doi:10.3969/j.issn.1006-2084.2020.11.007. |
[1] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[2] | Li Xiaoxue, Xiao Xiao, Xu Chunhua, Dong Shulan, Wang Shanshan, Cao Jiayi, Wu Zheyuan, Hu Yi, Shen Xin. The prevalence of latent tuberculosis infection among close contacts of active tuberculosis patients: a Meta-analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 404-414. |
[3] | Lu Kunyun, Tang Shunding, Wu Wei, Li Ling, Yang Rui, Xu Lin. Analysis of tuberculosis case detection in key areas of Yunnan Province during 2015—2022 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 415-421. |
[4] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[5] | Cai Xiaoting, Du Yuhua, Wu Guifeng, He Liqian, Su Bihui, Gong Fang, Wang Ting, Lai Keng, Wu Xiaoying. Analysis of pulmonary tuberculosis registration and its characteristics in Guangzhou City from 2016 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 430-436. |
[6] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[7] | Liu Weijian, Xu Yuxiang, Zhan Shenlin, Zhang Peize, Qin Hongjuan. Clinical characteristics of patients died of active tuberculosis with different ages in tuberculosis specialized hospital [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 445-452. |
[8] | Chen Yanxiao, Du Ying, Zhang Bin, Du Jiang, Cao Xuefang, Feng Boxuan, Guo Tonglei, He Yijun, Shen Lingyu, Huang Juanjuan, Di Yuanzhi, Liang Jianguo, Li Zihan, Liu Zisen, Duan Weitao, Gao Lei, Xin He’nan. Knowledge of tuberculosis infection control and its associated factors among doctors in primary medical institutions in Zhongmu [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 453-460. |
[9] | Zeng Qin, Zeng Fanqing, He Kun, Yang Honghong, Liu Min. The value of routine pathology microscopy, acid-fast staining, and TB-DNA in diagnosis of lymph node tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 461-467. |
[10] | Liang Yaping, Wang Zhuo, Liu Jiayun, Zhu Lei, Li Jing, Li Meng, Wu Qianhong. Clinical trial study of a Chinese domestic tuberculous bacillus T-cell immune response detection kit [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 289-293. |
[11] | Chen Yanling, Wu Di, Chen Xiuping, Lin Yujun, Chen Xiaohong. Study on the changes in lymphocyte subsets during secondary pulmonary tuberculosis dissemination and its clinical significance [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 294-304. |
[12] | Lezhe Laji, He Xin, Xu Qiang, Fan Li, Cao Hongju, Sun Shanhua. Epidemiological characteristics of pulmonary tuberculosis from Meigu County,Liangshan Yi Autonomous Prefecture from 2019 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 311-316. |
[13] | Zhao Wenli, Fang Zihao, Xu Yannan, Liu Suyang, Lin Jianxiong, Chen Zhuanghao, Fu Hui, Chen Ruiming, Chang Qiaocheng. Epidemiological characteristics of tuberculosis in Na’nao County, Guangdong Province from 2005 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 317-324. |
[14] | Xia Jun. Epidemiological characteristics analysis of pulmonary tuberculosis in Shangrao City, Jiangxi Province from 2014 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 325-332. |
[15] | Cai Xiaoting, Wu Xiaoying, He Liqian, Jiang Kunhong. A study on the correlation between family doctor contract services and clinical characteristics of pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 333-338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||