Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (4): 345-351.doi: 10.19983/j.issn.2096-8493.2024045
• Review Articles • Previous Articles Next Articles
He Fanyi, Lu Nihong, Du Yingrong()
Received:
2024-03-12
Online:
2024-08-20
Published:
2024-08-13
Contact:
Du Yingrong
E-mail:dyr_km@163.com
Supported by:
CLC Number:
He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(4): 345-351. doi: 10.19983/j.issn.2096-8493.2024045
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024045
[1] | 涂娇琴, 史娇阳, 范涛, 等. 妊娠合并新型冠状病毒肺炎的临床特点及管理策略. 国际医药卫生导报, 2022, 28(9):1243-1246. doi:10.3760/cma.j.issn.1007-1245.2022.09.014. |
[2] | 李兰娟, 任红. 传染病学. 9版. 北京: 人民卫生出版社, 2018: 212-219. |
[3] | Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1):e20. doi:10.1016/S2666-5247(22)00359-7. |
[4] | Saunders MJ, Evans CA. COVID-19, tuberculosis and poverty: preventing a perfect storm. Eur Respir J, 2020, 56(1):2001348. doi:10.1183/13993003.01348-2020. |
[5] | Tadolini M, Codecasa LR, Garcí a-García JM, et al. Active Tuberculosis, Sequelae and COVID-19 Co-Infection: First Cohort of 49 Cases. Eur Respir J, 2020, 56(1):2001398. doi:10.1183/13993003.01398-2020. |
[6] | World Health Organization. Number of COVID-19 deaths reported to WHO[EB/OL]. [2024-06-02]. https://data.who.int/dashboards/covid19/deaths?n=c. |
[7] | Pai M, Kasaeva T, Swaminathan S. Covid-19’s devastating effect on tuberculosis care-A path to recovery. N Engl J Med, 2022, 386(16):1490-1493. doi:10.1056/NEJMp2118145. |
[8] | Jassat W, Cohen C, Tempia S, et al. Risk factors for COVID-19-related in-hospital mortality in a high HIV and tuberculosis prevalence setting in South Africa: a cohort study. Lancet HIV, 2021, 8(9):e554 -e567. doi:10.1016/S2352-3018(21)00151-X. |
[9] | Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin Infect Dis, 2021, 73(7):e2005-e2015. doi:10.1093/cid/ciaa1198. |
[10] |
Motta I, Centis R, D’Ambrosio L, et al. Tuberculosis, COVID-19 and migrants: Preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology, 2020, 26(4):233-240. doi:10.1016/j.pulmoe.2020.05.002.
pmid: 32411943 |
[11] | Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents?. J Microbiol Immunol Infect, 2020, 53(4):505-512. doi:10.1016/j.jmii.2020.05.013. |
[12] |
du Bruyn E, Stek C, Daroowala R, et al. Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nat Commun, 2023, 14(1):188. doi:10.1038/s41467-022-35689-1.
pmid: 36635274 |
[13] | Vergori A, Boschini A, Notari S, et al. SARS-CoV-2 Specific Immune Response and Inflammatory Profile in Advanced HIV-Infected Persons during a COVID-19 Outbreak. Viruses, 2022, 14(7):1575. doi:10.3390/v14071575. |
[14] |
Wang Y, Feng R, Xu J, et al. An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality. J Med Virol, 2021, 93(10):5682-5686. doi:10.1002/jmv.27119.
pmid: 34061374 |
[15] |
Shah VK, Firmal P, Alam A, et al. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol, 2020, 11:1949. doi:10.3389/fimmu.2020.01949.
pmid: 32849654 |
[16] | Vetter P, Eberhardt CS, Meyer B, et al. Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series. mSphere, 2020, 5(6):e00827-20. doi:10.1128/mSphere.00827-20. |
[17] |
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1):316-329. doi:10.7150/thno.49713.
pmid: 33391477 |
[18] |
Agrati C, Carsetti R, Bordoni V, et al. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology, 2022, 167(3):287-302. doi:10.1111/imm.13564.
pmid: 35971810 |
[19] | Murdaca G, Di Gioacchino M, Greco M, et al. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells, 2021, 10(10):2754. doi:10.3390/cells10102754. |
[20] | Liu Q, Chi S, Dmytruk K, et al. Coronaviral infection and interferon response: the virus-host arms race and COVID-19. Viruses, 2022, 14(7):1349. doi:10.3390/v14071349. |
[21] | Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type Ⅰ Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev, 2021, 34(3):e00299-20. doi:10.1128/CMR.00299-20. |
[22] |
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol, 2017, 25 (8):688-697. doi:10.1016/j.tim.2017.03.007.
pmid: 28366292 |
[23] | Mayer-Barber KD, Barber DL. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb Perspect Med, 2015, 5(12): a018424. doi:10.1101/cshperspect.a018424. |
[24] | Taha RA, Kotsimbos TC, Song YL, et al. IFN-gamma and IL-12 are increased in active compared with inactive tuberculosis. Am J Respir Crit Care Med, 1997, 155(3):1135-1139. doi:10.1164/ajrccm.155.3.9116999. |
[25] | Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 2002, 2(Suppl 2):ii54-ii58. doi:10.1136/ard.61.suppl_2.ii54. |
[26] |
Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 2018, 18(9):575-589. doi:10.1038/s41577-018-0025-3.
pmid: 29895826 |
[27] |
Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol, 2002, 168 (9):4620-4627. doi:10.4049/jimmunol.168.9.4620.
pmid: 11971010 |
[28] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(2):318-329. doi:10.1038/s41590-021-01121-x.
pmid: 35058616 |
[29] | Fatima S, Kumari A, Das G, et al. Tuberculosis vaccine: a journey from BCG to present. Life Sci, 2020, 252:117594. doi:10.1016/j.lfs.2020.117594. |
[30] | Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis (Lond), 2020, 52(12):902-907. doi:10.1080/23744235.2020.1806353. |
[31] | Dheda K, Perumal T, Moultrie H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patientlevel impact, clinical presentation, and corrective interventions. Lancet Respir Med, 2022, 10(6):603-622. doi:10.1016/S2213-2600(22)00092-3. |
[32] | Gao Y, Liu M, Chen Y, et al. Association between tuberculosis and COVID-19 severity and mortality: A rapid systematic review and meta-analysis. J Med Virol, 2021, 93(1):194-196. doi:10.1002/jmv.26311. |
[33] | TB/COVID-19 Global Study Group. Tuberculosis and COVID-19 coinfection: description of the global cohort. Eur Respir J, 2022, 59(3):2102538. doi:10.1183/13993003.02538-2021. |
[34] | Mousquer GT, Peres A, Fiegenbaum M. Pathology of TB/COVID-19 Co-Infection: The phantom menace. Tuberculosis (Edinb), 2021, 126:102020. doi:10.1016/j.tube.2020.102020. |
[35] | Stochino C, Villa S, Zucchi P, et al. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur Respir J, 2020, 56(1):2001708. doi:10.1183/13993003.01708-2020. |
[36] | Starshinova AA, Kudryavtsev I, Malkova A, et al. Molecular and Cellular Mechanisms of M.tuberculosis and SARS-CoV-2 Infections-Unexpected Similarities of Pathogenesis and What to Expect from Co-Infection. Int J Mol Sci, 2022, 23(4):2235. doi:10.3390/ijms23042235. |
[37] | Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol, 2013, 3:411. doi:10.3389/fimmu.2012.00411. |
[38] | Sakurai A, Sasaki T, Kato S, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med, 2020, 383(9):885-886. doi:10.1056/NEJMc2013020. |
[39] |
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, 75(7):1564-1581. doi:10.1111/all.14364.
pmid: 32396996 |
[40] | Tapela K, Ochieng’ Olwal C, Quaye O. Parallels in the pathogenesis of SARS-CoV-2 and M.Tuberculosis: a synergistic or antagonistic alliance?. Future Microbiol, 2020, 15:1691-1695. doi:10.2217/fmb-2020-0179. |
[41] | Shah T, Shah Z, Yasmeen N, et al. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol, 2022, 13:909011. doi:10.3389/fimmu.2022.909011. |
[42] | Pinheiro DO, Pessoa MSL, Lima CFC, et al. Tuberculosis and coronavirus disease 2019 coinfection. Rev Soc Bras Med Trop, 2020, 53:e20200671. doi:10.1590/0037-8682-0671-2020. |
[43] | Shariq M, Sheikh JA, Quadir N, et al. COVID-19 and Tuberculosis: the double whammy of respiratory pathogens. Eur Respir Rev, 2022, 31(164):210264. doi:10.1183/16000617.0264-2021. |
[44] | Oei W, Nishiura H. The relationship between tuberculosis and influenza death during the influenza (H1N1) pandemic from 1918-19. Comput Math Methods Med, 2012, 2012:124861. doi:10.1155/2012/124861. |
[45] | Moorlag SJCFM, Arts RJW, van Crevel R, et al. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect, 2019, 25(12):1473-1478. doi:10.1016/j.cmi.2019.04.020. |
[46] |
Covián C, Fernández-Fierro A, Retamal-Díaz A, et al. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol, 2019, 10:2806. doi:10.3389/fimmu.2019.02806.
pmid: 31849980 |
[47] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th 17 responses and innate trained immunity. J Innate Immun, 2014, 6(2):152-158. doi:10.1159/000355628.
pmid: 24192057 |
[48] | Netea MG, Joosten LA, Latz E, et al. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science, 2016, 352(6284):aaf1098. doi:10.1126/science.aaf1098. |
[49] | Chowdhury UN, Faruqe MO, Mehedy M, et al. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med, 2021, 138:104891. doi:10.1016/j.compbiomed.2021.104891. |
[50] |
O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat Rev Immunol, 2020, 20(6):335-337. doi:10.1038/s41577-020-0337-y.
pmid: 32393823 |
[51] | Urashima M, Otani K, Hasegawa Y, et al. BCG Vaccination and Mortality of COVID-19 across 173 Countries: An Ecological Study. Int J Environ Res Public Health, 2020, 17(15):5589. doi:10.3390/ijerph17155589. |
[52] |
Wickramasinghe D, Wickramasinghe N, Kamburugamuwa SA, et al. Correlation Between Immunity From BCG and the Morbidity and Mortality of COVID-19. Trop Dis Travel Med Vaccines, 2020, 6:17. doi:10.1186/s40794-020-00117-z.
pmid: 32868985 |
[53] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 2020, 395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0.
pmid: 32192578 |
[54] | Deshmukh R, Harwansh RK, Garg A, et al. COVID-19: Recent Insight in Genomic Feature, Pathogenesis, Immunological Biomarkers, Treatment Options and Clinical Updates on SARS-CoV-2. Curr Genomics, 2024, 25(2):69-87. doi:10.2174/0113892029291098240129113500. |
[55] | Rajamanickam A, Pavan Kumar N, Chandrasekaran P, et al. Effect of SARS-CoV-2 seropositivity on antigen-specific cytokine and chemokine responses in latent tuberculosis. Cytokine, 2022, 150:155785. doi:10.1016/j.cyto.2021.155785. |
[56] | Tadolini M, García-García JM, Blanc FX, et al. On Tuberculosis and COVID-19 co-infection. Eur Respir J, 2020, 56(2):2002328. doi:10.1183/13993003.02328-2020. |
[57] | Ruhwald M, Carmona S, Pai M. Learning from COVID-19 to reimagine tuberculosis diagnosis. Lancet Microbe, 2021, 2(5):e169 -e170. doi:10.1016/S2666-5247(21)00057-4. |
[58] | WHO Rapid Evidence Appraisal for COVID-19 Therapies REACT Working Group, Sterne JAC, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA, 2020, 324(13): 1330-1341. doi:10.1001/jama.2020.17023. |
[59] | Tang W, Leonhardt L, Pervez A, et al. A Case of Pleural Tuberculosis vs Latent Tuberculosis Reactivation as a Result of COVID-19 Infection and Treatment. J Community Hosp Intern Med Perspect, 2022, 12(4):89-93. doi:10.55729/2000-9666.1078. |
[60] | Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 therapy: potential implications on tuberculosis. Int J Mol Sci, 2021, 22(7):3773. doi:10.3390/ijms22073773. |
[1] | Liang Yaping, Wang Zhuo, Liu Jiayun, Zhu Lei, Li Jing, Li Meng, Wu Qianhong. Clinical trial study of a Chinese domestic tuberculous bacillus T-cell immune response detection kit [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 289-293. |
[2] | Chen Yanling, Wu Di, Chen Xiuping, Lin Yujun, Chen Xiaohong. Study on the changes in lymphocyte subsets during secondary pulmonary tuberculosis dissemination and its clinical significance [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 294-304. |
[3] | Lezhe Laji, He Xin, Xu Qiang, Fan Li, Cao Hongju, Sun Shanhua. Epidemiological characteristics of pulmonary tuberculosis from Meigu County,Liangshan Yi Autonomous Prefecture from 2019 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 311-316. |
[4] | Zhao Wenli, Fang Zihao, Xu Yannan, Liu Suyang, Lin Jianxiong, Chen Zhuanghao, Fu Hui, Chen Ruiming, Chang Qiaocheng. Epidemiological characteristics of tuberculosis in Na’nao County, Guangdong Province from 2005 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 317-324. |
[5] | Xia Jun. Epidemiological characteristics analysis of pulmonary tuberculosis in Shangrao City, Jiangxi Province from 2014 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 325-332. |
[6] | Cai Xiaoting, Wu Xiaoying, He Liqian, Jiang Kunhong. A study on the correlation between family doctor contract services and clinical characteristics of pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 333-338. |
[7] | Li Yabo, Fan Lijuan, Sun Xiuli, Gou Liangzhi, Ren Beiying, Shi Juanzi, Wang Fang, Ma Xiaoling, Xie Yonghong, Liu Xin, Wu Qianhong. Progress in tuberculosis infection screening, diagnosis and treatment of female infertility patients before in vitro fertilization-embryo transfer [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 352-357. |
[8] | Wei Jing Ru, Chen Hui, Cheng Jun. Research progress of tuberculosis screening and preventive treatment in senior high school students [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 358-363. |
[9] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[10] | Jiang Ruoxi, Zhong Da, Dou Xiaojie. Analysis of influencing factors on treatment failure in initially treated patients with bacterial positive pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 236-243. |
[11] | Cai Xiaoting, Jiang Kunhong, He Liqian, De Hong, Wang Ting, Lai Keng, Wu Xiaoying. Analysis of the results of pulmonary tuberculosis screening among the elderly in Haizhu District, Guangzhou [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 244-248. |
[12] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
[13] | Xu Siyun, Lu Nihong. Research progress of respiratory system injury caused by novel coronavirus [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 267-272. |
[14] | Yang Hongjie, Qi Fei, Zhang Hongmei, Wu Hongbo, Hu Aimin, Zhang Tongmei. Current status of diagnosis and clinical treatment on co-existent pulmonary tuberculosis and lung cancer [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 273-278. |
[15] | Lin Ying, Lei Yu, Zhong Miner, Du Yuhua. Construction of a new system of school tuberculosis prevention and control strategy using Delphi evaluation method [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 120-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||