Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (3): 267-272.doi: 10.19983/j.issn.2096-8493.2024041
• Review Articles • Previous Articles Next Articles
Received:
2024-02-23
Online:
2024-06-20
Published:
2024-06-12
Contact:
Lu Nihong,Email:602157606@qq.com
Supported by:
CLC Number:
Xu Siyun, Lu Nihong. Research progress of respiratory system injury caused by novel coronavirus[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(3): 267-272. doi: 10.19983/j.issn.2096-8493.2024041
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024041
[1] |
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224):565-574. doi:10.1016/S0140-6736(20)30251-8.
pmid: 32007145 |
[2] | World Health Organization. WHO COVID-19 Dashboard. Geneva: World Health Organization, 2023. |
[3] | He X, Hong W, Pan X, et al. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm (2020), 2021, 2(4):838-845. doi:10.1002/mco2.110. |
[4] | Zhao Y, Zhao Z, Wang Y, et al. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med, 2020, 202(5):756-759. doi:10.1164/rccm.202001-0179LE. |
[5] |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020, 181(2):271-280.e8. doi:10.1016/j.cell.2020.02.052.
pmid: 32142651 |
[6] | Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 2022, 23(1):3-20. doi:10.1038/s41580-021-00418-x. |
[7] |
Jiang S, Hillyer C, Du L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses: (Trends in Immunology 41, 355-359; 2020). Trends Immunol, 2020, 41(6):545. doi:10.1016/j.it.2020.04.008.
pmid: 32362491 |
[8] |
Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE 2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 2020, 181(5):1016-1035.e19. doi:10.1016/j.cell.2020.04.035.
pmid: 32413319 |
[9] | Triposkiadis F, Starling RC, Xanthopoulos A, et al. The Counter Regulatory Axis of the Lung Renin-Angiotensin System in Severe COVID-19: Pathophysiology and Clinical Implications. Heart Lung Circ, 2021, 30(6):786-794. doi:10.1016/j.hlc.2020.11.008. |
[10] | Hussman JP. Cellular and Molecular Pathways of COVID-19 and Potential Points of Therapeutic Intervention. Front Pharmacol, 2020,11:1169. doi:10.3389/fphar.2020.01169. |
[11] | Choudhury A, Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol, 2020, 92(10):2105-2113. doi:10.1002/jmv.25987. |
[12] | Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 2020,55:102763. doi:10.1016/j.ebiom.2020.102763. |
[13] |
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020, 130(5):2620-2629. doi:10.1172/JCI137244.
pmid: 32217835 |
[14] | Verma S, Abbas M, Verma S, et al. Impact of I/D polymorphism of angiotensin-converting enzyme 1 (ACE1) gene on the severity of COVID-19 patients. Infect Genet Evol, 2021,91:104801. doi:10.1016/j.meegid.2021.104801. |
[15] | Barbayianni I, Kanellopoulou P, Fanidis D, et al. SRC and TKS5 mediated podosome formation in fibroblasts promotes extracellular matrix invasion and pulmonary fibrosis. Nat Commun, 2023, 14(1):5882. doi:10.1038/s41467-023-41614-x. |
[16] | Hirawat R, Jain N, Aslam Saifi M, et al. Lung fibrosis: Post-COVID-19 complications and evidences. Int Immunopharmacol, 2023,116:109418. doi:10.1016/j.intimp.2022.109418. |
[17] | 中华人民共和国国家卫生健康委员会办公厅, 中华人民共和国国家中医药管理局综合司. 新型冠状病毒感染诊疗方案(试行第十版). 中国医药, 2023, 18(2): 161-166. doi:10.3760/j.issn.1673-4777.2023.02.001. |
[18] |
Writing Committee for the COMEBAC Study Group, Morin L, Savale L, et al. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA, 2021, 325(15):1525-1534. doi:10.1001/jama.2021.3331.
pmid: 33729425 |
[19] | Li X, Shen C, Wang L, et al. Pulmonary fibrosis and its related factors in discharged patients with new corona virus pneumonia: a cohort study. Respir Res, 2021, 22(1):203. doi:10.1186/s12931-021-01798-6. |
[20] | 刘茜, 王荣帅, 屈国强, 等. 新型冠状病毒肺炎死亡尸体系统解剖大体观察报告. 法医学杂志, 2020, 36(1):21-23. doi:10.12116/j.issn.1004-5619.2020.01.005. |
[21] | Fan Y, Li X, Zhang L, et al. SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduct Target Ther, 2022, 7(1):141. doi:10.1038/s41392-022-00997-x. |
[22] | Miyashita N, Nakamori Y, Ogata M, et al. Comparison of pneumonia severity scores for COVID-19 patients with the Omicron variant. J Infect Chemother, 2024, 30(5):463-466. doi:10.1016/j.jiac.2023.11.007. |
[23] | Märkl B, Dintner S, Schaller T, et al. Fatal cases after Omicron BA.1 and BA.2 infection: Results of an autopsy study. Int J Infect Dis, 2023, 128:51-57. doi:10.1016/j.ijid.2022.12.029. |
[24] | Chakraborty C, Sharma AR, Bhattacharya M, et al. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol, 2022,13:801522. doi:10.3389/fimmu.2022.801522. |
[25] | Pham T, Rubenfeld GD. Fifty Years of Research in ARDS. The Epidemiology of Acute Respiratory Distress Syndrome. A 50th Birthday Review. Am J Respir Crit Care Med, 2017, 195(7):860-870. doi:10.1164/rccm.201609-1773CP. |
[26] |
Hendrickson KW, Peltan ID, Brown SM. The Epidemiology of Acute Respiratory Distress Syndrome Before and After Coronavirus Disease 2019. Crit Care Clin, 2021, 37(4):703-716. doi:10.1016/j.ccc.2021.05.001.
pmid: 34548129 |
[27] | Peltan ID, Caldwell E, Admon AJ, et al. Characteristics and Outcomes of US Patients Hospitalized With COVID-19. Am J Crit Care, 2022, 31(2):146-157. doi:10.4037/ajcc2022549. |
[28] | Chien JY, Hsueh PR, Cheng WC, et al. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology, 2006, 11(6):715-722. doi:10.1111/j.1440-1843.2006.00942.x. |
[29] |
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23):2526-2533. doi:10.1001/jama.2012.5669.
pmid: 22797452 |
[30] | Gosangi B, Rubinowitz AN, Irugu D, et al. COVID-19 ARDS: a review of imaging features and overview of mechanical ventilation and its complications. Emerg Radiol, 2022, 29(1):23-34. doi:10.1007/s10140-021-01976-5. |
[31] |
Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest, 1991, 88(3):864-875. doi:10.1172/JCI115388.
pmid: 1885774 |
[32] | Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine, 2020,58:102925. doi:10.1016/j.ebiom.2020.102925. |
[33] | Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest, 2020, 130(8):3950-3953. doi:10.1172/JCI140183. |
[34] | Yang K, Liu S, Yan H, et al. SARS-CoV-2 spike protein receptor-binding domain perturbates intracellular calcium homeostasis and impairs pulmonary vascular endothelial cells. Signal Transduct Target Ther, 2023, 8(1):276. doi:10.1038/s41392-023-01556-8. |
[35] |
Arachchillage DRJ, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 2020, 18(5):1233-1234. doi:10.1111/jth.14820.
pmid: 32291954 |
[36] | Schulman S, Hu Y, Konstantinides S. Venous Thromboembolism in COVID-19. Thromb Haemost, 2020, 120(12):1642-1653. doi:10.1055/s-0040-1718532. |
[37] | Tanni SE, Fabro AT, de Albuquerque A, et al. Pulmonary fibrosis secondary to COVID-19: a narrative review. Expert Rev Respir Med, 2021, 15(6):791-803. doi:10.1080/17476348.2021.1916472. |
[38] | Wu B, Huang M, Jiao G, et al. Lung transplantation during the outbreak of Coronavirus Disease 2019 in China. J Thorac Cardiovasc Surg, 2022, 163(1):326-335.e6. doi:10.1016/j.jtcvs.2020.10.154. |
[39] | Kiener M, Roldan N, Machahua C, et al. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne), 2021,8:644678. doi:10.3389/fmed.2021.644678. |
[40] | Gulati A, Lakhani P. Interstitial lung abnormalities and pulmonary fibrosis in COVID-19 patients: a short-term follow-up case series. Clin Imaging, 2021, 77:180-186. doi:10.1016/j.clinimag.2021.03.030. |
[41] | Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine, 2021,38:101019. doi:10.1016/j.eclinm.2021.101019. |
[42] | Gao YD, Ding M, Dong X, et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy, 2021, 76(2):428-455. doi:10.1111/all.14657. |
[43] |
Egan JJ, Martinez FJ, Wells AU, et al. Lung function estimates in idiopathic pulmonary fibrosis: the potential for a simple classification. Thorax, 2005, 60(4):270-273. doi:10.1136/thx.2004.035436.
pmid: 15790978 |
[44] |
du Bois RM, Albera C, Bradford WZ, et al. 6-Minute walk distance is an independent predictor of mortality in patients with idiopathic pulmonary fibrosis. Eur Respir J, 2014, 43(5):1421-1429. doi:10.1183/09031936.00131813.
pmid: 24311766 |
[1] | Yuan Yonglong, Li Huimei, Ma Dedong. Metagenomic next-generation sequencing assisted in the diagnosis of psittacosis: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 113-119. |
[2] | National Center of Medical Quality Control for Respiratory Diseases , Tuberculosis Branch of Chinese Medical Association , Tuberculosis Control Branch of Chinese Antituberculosis Association , China⁃Japan Friendship Hospital . Clinical practice guidelines for early detection of pulmonary tuberculosis in general medical facilities [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 1-14. |
[3] | hu Wei, Liu Yuhong. Interpretation of WHO global tuberculosis report 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 15-19. |
[4] | Lin Rongmei, Lu Nihong. Current status of myocardial injury associated with the coronavirus disease 2019 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 493-498. |
[5] | Cui Yanan, Chen Yan. Programmed cell death and its research progress in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 397-406. |
[6] | Gong Yabo, Liu Liqin, Xu Zuhui, Yang Yuan. Study on impact of COVID-19 on medical services of tuberculosis designated hospitals in Hunan Province [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(4): 277-282. |
[7] | Lu Yu, Wang Xiaodong. Research progress of non-drug therapy for chronic obstructive pulmonary disease-related fatigue [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 240-245. |
[8] | Gao Wenwan, Guo Jianqiong, Li Tongxin, Han Mei, Yan Xiaofeng, Yang Song, Tang Shenjie. The interpretation of the key points of the Expert Consensus on Immunotherapy for Tuberculosis (2022 edition) [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 194-197. |
[9] | Zhou Yongfang, Fu Jiangquan, Dong Wentao, Fang Donghai, Hu Xiaochun. Meta-analysis of efficacy and safety of inhaled nitric oxide in the treatment of severe and critical novel coronavirus pneumonia [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 33-40. |
[10] | Fan Mingkuan, Zhang Hui. Interpretation of the Evidence-based Guidelines for Active Screening of Pulmonary Tuberculosis in Chinese Communities [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 1-4. |
[11] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[12] | ZHANG Yan-kun, GUAN Yan, ZHAI Jing-jie, HAN Zhao. Application of anti-neovascular endothelial growth factor therapy in tuberculous chorioretinopathy: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 222-226. |
[13] | WU Di, LIN Fen, CHEN Xiao-hong, LIN You-fei, HUANG Ming-xiang, CHEN Li-zhou. Convalescent plasma therapy for two cases of rapid progressing severe COVID-19 and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 33-43. |
[14] | WU Di, FAN Xin-xin, SHEN Jian-shan, LIN You-fei, CHEN Xiao-hong, HUANG Ming-xiang, CHEN Li-zhou. Diagnostic value of combined detection of coagulation screening indicators and D-dimer in clinical classification of COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 355-360. |
[15] | ZHOU Jie, QI Qing, CHEN Long, WU Rui, SHI Guang-shuo, DU He, LIU Ya-xin, XIONG Lei, WU Zhi-le, WU Guo-xia. Investigation of knowledge of Global Initiative for Asthma in physicians [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 189-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||