Email Alert | RSS    帮助

结核病与肺部健康杂志 ›› 0, Vol. ›› Issue (): 204-207.doi: 10.3969/j.issn.2095-3755.2017.03.004

• 专论 • 上一篇    下一篇

实验动物结核病病变程度的评价

包容   

  1. 430071武汉大学动物实验中心 ABSL-3实验室,病理室
  • 收稿日期:2017-05-17 出版日期:2017-09-30
  • 通讯作者: 包容,Email:baorongxiao@whu.edu.cn
  • 基金资助:
    国家“十二五”科技重大专项(2013ZX10003009-003)

实验动物结核病病变程度的评价

BAO Rong   

  1. Pathology Laboratory, Center for Animal Experiment/Animal Biosafety Level 3 Laboratory, Wuhan University School of Medicine, Wuhan430071, China
  • Received:2017-05-17 Online:2017-09-30
  • Contact: BAO Rong,Email:baorongxiao@whu.edu.cn

摘要: 结核病病变程度是对结核病疫苗及抗结核化学药物安全性,有效性进行评价时非常需要确定的问 题,可以反映结核病动物模型干预因素(如药物、疫苗、菌株毒力等)的效果,这对于相关药物、疫苗的研发具有重要 参考意义。结核病病变程度的量化可以为结核病疫苗、药物筛选提供更为可靠的方法。

Abstract: The lesion of tuberculosis is important for safety and efficacy evaluation of vaccine and drug against tuberculosis, it could indicate the effect of drug, vaccine and strain virulence in tuberculosis (TB) animal model, which is very important for related investigation. Evaluation of tuberculosis may provide a reliable method for vaccine and drug development against anti-tuberculosis.

[1] Lin PL, Coleman T, Carney JP, et al. Radiologic responses in cynomolgus macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother, 2013, 57(9):4237-4244.
[2] Lin PL, Rodgers M, Smith L, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun, 2009, 77(10):4631-4642.
[3] Hunter RL, Jagannath C, Actor JK. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis (Edinb), 2007, 87(4):267-278.
[4] Lin PL, Dartois V, Johnston PJ, et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A, 2012, 109(35):14188-14193.
[5] Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011, 17(2):189-194.
[6] Sweeney KA, Dao DN, Goldberg MF, et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med, 2011, 17(10):1261-1268.
[7] Yam KC, D'Angelo I, Kalscheuer R, et al. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog, 2009, 5(3):e1000344.
[8] Bertholet S, Ireton GC, Ordway DJ, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010, 2(53):53ra74.
[9] Lanoix JP, Lenaerts AJ, Nuermberger EL. Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech, 2015, 8(6):603-610.
[10] 李凡, 刘晶星. 医学微生物学. 7版. 北京:人民卫生出版社, 2008: 67.
[11] 王平. 表达Ag85B-ESAT-6融合蛋白的重组耻垢分枝杆菌对结核分枝杆菌感染小鼠免疫治疗效果评价. 西安:第四军医大学, 2014.
[12] 李青, 傅林锋, 王秉翔, 等. 结核分枝杆菌融合蛋白亚单位疫苗对BCG初始免疫的加强效应及保护效力. 中国生物制品学杂志, 2010, 23(3):280-285.
[13] Lin PL, Pawar S, Myers A, et al. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun, 2006, 74(7):3790-3803.
[14] Chen CY, Huang D, Yao S, et al. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol, 2012, 188(9):4278-4288.
[15] Chen CY, Huang D, Wang RC, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog, 2009, 5(4):e1000392.
[16] Zhang J, Xian Q, Guo M, et al. Mycobacterium tuberculosis Erdman infection of rhesus macaques of Chinese origin. Tuberculosis (Edinb), 2014, 94(6):634-643.
[17] Via LE, Weiner DM, Schimel D, et al. Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus). Infect Immun, 2013, 81(8):2909-2919.
[18] 王勇, 莫平征, 唐志佼, 等. 中国恒河猴结核病模型的建立与评价. 中华结核和呼吸杂志, 2012, 35(11):843-848.
[19] Luciw PA, Oslund KL, Yang XW, et al. Stereological analysis of bacterial load and lung lesions in nonhuman primates (rhesus macaques) experimentally infected with Mycobacterium tuberculosis. Am J Physiol Lung Cell Mol Physiol, 2011, 301(5):L731-738.
[20] Irwin SM, Driver E, Lyon E, et al. Presence of multiple lesion types with vastly different microenvironments in C3HeB/FeJ mice following aerosol infection with Mycobacterium tuberculosis. Dis Model Mech, 2015, 8(6):591-602.
[21] Antonelli LR, Gigliotti Rothfuchs A, Gonçalves R, et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest, 2010, 120(5):1674-1682.
[22] Palanisamy GS, Smith EE, Shanley CA, et al. Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb), 2008, 88(4):295-306.
[23] Wedlock DN, Denis M, Painter GF, et al. Enhanced protection against bovine tuberculosis after coadministration of Mycobacterium bovis BCG with a Mycobacterial protein vaccine-adjuvant combination but not after coadministration of adjuvant alone. Clin Vaccine Immunol, 2008, 15(5):765-772.
[24] Blanco FC, Bianco MV, Garbaccio S, et al. Mycobacterium bovis Δmce2 double deletion mutant protects cattle against challenge with virulent M. bovis. Tuberculosis (Edinb), 2013, 93(3):363-372.
[25] 苏明明, 金澎, 宋海洋.颞叶癫痫病理改变的体视学研究进展. 中华神经医学杂志, 2011, 10(5):538-540.
[26] Hyde DM, Blozis SA, Avdalovic MV, et al. Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol, 2007, 293(3):L570-579.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!