结核与肺部疾病杂志 ›› 2024, Vol. 5 ›› Issue (4): 345-351.doi: 10.19983/j.issn.2096-8493.2024045
收稿日期:
2024-03-12
出版日期:
2024-08-20
发布日期:
2024-08-13
通信作者:
杜映荣
E-mail:dyr_km@163.com
基金资助:
He Fanyi, Lu Nihong, Du Yingrong()
Received:
2024-03-12
Online:
2024-08-20
Published:
2024-08-13
Contact:
Du Yingrong
E-mail:dyr_km@163.com
Supported by:
摘要:
在新型冠状病毒感染(corona virus disease-2019, COVID-19)流行之前,结核病(tuberculosis,TB)是威胁公共健康的主要呼吸道传染病之一。两病具有共同的致病途径,都是主要经呼吸道飞沫传播,且临床特征相似,合并感染会造成双重负担,既可加重COVID-19的严重程度,又可恶化活动性TB,甚至引起细胞因子风暴,导致严重的呼吸系统疾病,增加患者的死亡风险。COVID-19大流行也对公共医疗保健系统提出了严峻的挑战,明显干扰了TB患者的医疗服务,进一步加大了全球TB患者的发病率和病亡率。因此,作者对COVID-19与TB两种传染病之间相互作用的研究进展进行综述,以期为临床研究和诊治提供参考。
中图分类号:
何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. doi: 10.19983/j.issn.2096-8493.2024045
He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19[J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. doi: 10.19983/j.issn.2096-8493.2024045
[1] | 涂娇琴, 史娇阳, 范涛, 等. 妊娠合并新型冠状病毒肺炎的临床特点及管理策略. 国际医药卫生导报, 2022, 28(9):1243-1246. doi:10.3760/cma.j.issn.1007-1245.2022.09.014. |
[2] | 李兰娟, 任红. 传染病学. 9版. 北京: 人民卫生出版社, 2018: 212-219. |
[3] | Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1):e20. doi:10.1016/S2666-5247(22)00359-7. |
[4] | Saunders MJ, Evans CA. COVID-19, tuberculosis and poverty: preventing a perfect storm. Eur Respir J, 2020, 56(1):2001348. doi:10.1183/13993003.01348-2020. |
[5] | Tadolini M, Codecasa LR, Garcí a-García JM, et al. Active Tuberculosis, Sequelae and COVID-19 Co-Infection: First Cohort of 49 Cases. Eur Respir J, 2020, 56(1):2001398. doi:10.1183/13993003.01398-2020. |
[6] | World Health Organization. Number of COVID-19 deaths reported to WHO[EB/OL]. [2024-06-02]. https://data.who.int/dashboards/covid19/deaths?n=c. |
[7] | Pai M, Kasaeva T, Swaminathan S. Covid-19’s devastating effect on tuberculosis care-A path to recovery. N Engl J Med, 2022, 386(16):1490-1493. doi:10.1056/NEJMp2118145. |
[8] | Jassat W, Cohen C, Tempia S, et al. Risk factors for COVID-19-related in-hospital mortality in a high HIV and tuberculosis prevalence setting in South Africa: a cohort study. Lancet HIV, 2021, 8(9):e554 -e567. doi:10.1016/S2352-3018(21)00151-X. |
[9] | Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin Infect Dis, 2021, 73(7):e2005-e2015. doi:10.1093/cid/ciaa1198. |
[10] |
Motta I, Centis R, D’Ambrosio L, et al. Tuberculosis, COVID-19 and migrants: Preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology, 2020, 26(4):233-240. doi:10.1016/j.pulmoe.2020.05.002.
pmid: 32411943 |
[11] | Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents?. J Microbiol Immunol Infect, 2020, 53(4):505-512. doi:10.1016/j.jmii.2020.05.013. |
[12] |
du Bruyn E, Stek C, Daroowala R, et al. Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nat Commun, 2023, 14(1):188. doi:10.1038/s41467-022-35689-1.
pmid: 36635274 |
[13] | Vergori A, Boschini A, Notari S, et al. SARS-CoV-2 Specific Immune Response and Inflammatory Profile in Advanced HIV-Infected Persons during a COVID-19 Outbreak. Viruses, 2022, 14(7):1575. doi:10.3390/v14071575. |
[14] |
Wang Y, Feng R, Xu J, et al. An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality. J Med Virol, 2021, 93(10):5682-5686. doi:10.1002/jmv.27119.
pmid: 34061374 |
[15] |
Shah VK, Firmal P, Alam A, et al. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol, 2020, 11:1949. doi:10.3389/fimmu.2020.01949.
pmid: 32849654 |
[16] | Vetter P, Eberhardt CS, Meyer B, et al. Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series. mSphere, 2020, 5(6):e00827-20. doi:10.1128/mSphere.00827-20. |
[17] |
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1):316-329. doi:10.7150/thno.49713.
pmid: 33391477 |
[18] |
Agrati C, Carsetti R, Bordoni V, et al. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology, 2022, 167(3):287-302. doi:10.1111/imm.13564.
pmid: 35971810 |
[19] | Murdaca G, Di Gioacchino M, Greco M, et al. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells, 2021, 10(10):2754. doi:10.3390/cells10102754. |
[20] | Liu Q, Chi S, Dmytruk K, et al. Coronaviral infection and interferon response: the virus-host arms race and COVID-19. Viruses, 2022, 14(7):1349. doi:10.3390/v14071349. |
[21] | Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type Ⅰ Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev, 2021, 34(3):e00299-20. doi:10.1128/CMR.00299-20. |
[22] |
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol, 2017, 25 (8):688-697. doi:10.1016/j.tim.2017.03.007.
pmid: 28366292 |
[23] | Mayer-Barber KD, Barber DL. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb Perspect Med, 2015, 5(12): a018424. doi:10.1101/cshperspect.a018424. |
[24] | Taha RA, Kotsimbos TC, Song YL, et al. IFN-gamma and IL-12 are increased in active compared with inactive tuberculosis. Am J Respir Crit Care Med, 1997, 155(3):1135-1139. doi:10.1164/ajrccm.155.3.9116999. |
[25] | Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 2002, 2(Suppl 2):ii54-ii58. doi:10.1136/ard.61.suppl_2.ii54. |
[26] |
Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 2018, 18(9):575-589. doi:10.1038/s41577-018-0025-3.
pmid: 29895826 |
[27] |
Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol, 2002, 168 (9):4620-4627. doi:10.4049/jimmunol.168.9.4620.
pmid: 11971010 |
[28] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(2):318-329. doi:10.1038/s41590-021-01121-x.
pmid: 35058616 |
[29] | Fatima S, Kumari A, Das G, et al. Tuberculosis vaccine: a journey from BCG to present. Life Sci, 2020, 252:117594. doi:10.1016/j.lfs.2020.117594. |
[30] | Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis (Lond), 2020, 52(12):902-907. doi:10.1080/23744235.2020.1806353. |
[31] | Dheda K, Perumal T, Moultrie H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patientlevel impact, clinical presentation, and corrective interventions. Lancet Respir Med, 2022, 10(6):603-622. doi:10.1016/S2213-2600(22)00092-3. |
[32] | Gao Y, Liu M, Chen Y, et al. Association between tuberculosis and COVID-19 severity and mortality: A rapid systematic review and meta-analysis. J Med Virol, 2021, 93(1):194-196. doi:10.1002/jmv.26311. |
[33] | TB/COVID-19 Global Study Group. Tuberculosis and COVID-19 coinfection: description of the global cohort. Eur Respir J, 2022, 59(3):2102538. doi:10.1183/13993003.02538-2021. |
[34] | Mousquer GT, Peres A, Fiegenbaum M. Pathology of TB/COVID-19 Co-Infection: The phantom menace. Tuberculosis (Edinb), 2021, 126:102020. doi:10.1016/j.tube.2020.102020. |
[35] | Stochino C, Villa S, Zucchi P, et al. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur Respir J, 2020, 56(1):2001708. doi:10.1183/13993003.01708-2020. |
[36] | Starshinova AA, Kudryavtsev I, Malkova A, et al. Molecular and Cellular Mechanisms of M.tuberculosis and SARS-CoV-2 Infections-Unexpected Similarities of Pathogenesis and What to Expect from Co-Infection. Int J Mol Sci, 2022, 23(4):2235. doi:10.3390/ijms23042235. |
[37] | Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol, 2013, 3:411. doi:10.3389/fimmu.2012.00411. |
[38] | Sakurai A, Sasaki T, Kato S, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med, 2020, 383(9):885-886. doi:10.1056/NEJMc2013020. |
[39] |
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, 75(7):1564-1581. doi:10.1111/all.14364.
pmid: 32396996 |
[40] | Tapela K, Ochieng’ Olwal C, Quaye O. Parallels in the pathogenesis of SARS-CoV-2 and M.Tuberculosis: a synergistic or antagonistic alliance?. Future Microbiol, 2020, 15:1691-1695. doi:10.2217/fmb-2020-0179. |
[41] | Shah T, Shah Z, Yasmeen N, et al. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol, 2022, 13:909011. doi:10.3389/fimmu.2022.909011. |
[42] | Pinheiro DO, Pessoa MSL, Lima CFC, et al. Tuberculosis and coronavirus disease 2019 coinfection. Rev Soc Bras Med Trop, 2020, 53:e20200671. doi:10.1590/0037-8682-0671-2020. |
[43] | Shariq M, Sheikh JA, Quadir N, et al. COVID-19 and Tuberculosis: the double whammy of respiratory pathogens. Eur Respir Rev, 2022, 31(164):210264. doi:10.1183/16000617.0264-2021. |
[44] | Oei W, Nishiura H. The relationship between tuberculosis and influenza death during the influenza (H1N1) pandemic from 1918-19. Comput Math Methods Med, 2012, 2012:124861. doi:10.1155/2012/124861. |
[45] | Moorlag SJCFM, Arts RJW, van Crevel R, et al. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect, 2019, 25(12):1473-1478. doi:10.1016/j.cmi.2019.04.020. |
[46] |
Covián C, Fernández-Fierro A, Retamal-Díaz A, et al. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol, 2019, 10:2806. doi:10.3389/fimmu.2019.02806.
pmid: 31849980 |
[47] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th 17 responses and innate trained immunity. J Innate Immun, 2014, 6(2):152-158. doi:10.1159/000355628.
pmid: 24192057 |
[48] | Netea MG, Joosten LA, Latz E, et al. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science, 2016, 352(6284):aaf1098. doi:10.1126/science.aaf1098. |
[49] | Chowdhury UN, Faruqe MO, Mehedy M, et al. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med, 2021, 138:104891. doi:10.1016/j.compbiomed.2021.104891. |
[50] |
O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat Rev Immunol, 2020, 20(6):335-337. doi:10.1038/s41577-020-0337-y.
pmid: 32393823 |
[51] | Urashima M, Otani K, Hasegawa Y, et al. BCG Vaccination and Mortality of COVID-19 across 173 Countries: An Ecological Study. Int J Environ Res Public Health, 2020, 17(15):5589. doi:10.3390/ijerph17155589. |
[52] |
Wickramasinghe D, Wickramasinghe N, Kamburugamuwa SA, et al. Correlation Between Immunity From BCG and the Morbidity and Mortality of COVID-19. Trop Dis Travel Med Vaccines, 2020, 6:17. doi:10.1186/s40794-020-00117-z.
pmid: 32868985 |
[53] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 2020, 395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0.
pmid: 32192578 |
[54] | Deshmukh R, Harwansh RK, Garg A, et al. COVID-19: Recent Insight in Genomic Feature, Pathogenesis, Immunological Biomarkers, Treatment Options and Clinical Updates on SARS-CoV-2. Curr Genomics, 2024, 25(2):69-87. doi:10.2174/0113892029291098240129113500. |
[55] | Rajamanickam A, Pavan Kumar N, Chandrasekaran P, et al. Effect of SARS-CoV-2 seropositivity on antigen-specific cytokine and chemokine responses in latent tuberculosis. Cytokine, 2022, 150:155785. doi:10.1016/j.cyto.2021.155785. |
[56] | Tadolini M, García-García JM, Blanc FX, et al. On Tuberculosis and COVID-19 co-infection. Eur Respir J, 2020, 56(2):2002328. doi:10.1183/13993003.02328-2020. |
[57] | Ruhwald M, Carmona S, Pai M. Learning from COVID-19 to reimagine tuberculosis diagnosis. Lancet Microbe, 2021, 2(5):e169 -e170. doi:10.1016/S2666-5247(21)00057-4. |
[58] | WHO Rapid Evidence Appraisal for COVID-19 Therapies REACT Working Group, Sterne JAC, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA, 2020, 324(13): 1330-1341. doi:10.1001/jama.2020.17023. |
[59] | Tang W, Leonhardt L, Pervez A, et al. A Case of Pleural Tuberculosis vs Latent Tuberculosis Reactivation as a Result of COVID-19 Infection and Treatment. J Community Hosp Intern Med Perspect, 2022, 12(4):89-93. doi:10.55729/2000-9666.1078. |
[60] | Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 therapy: potential implications on tuberculosis. Int J Mol Sci, 2021, 22(7):3773. doi:10.3390/ijms22073773. |
[1] | 仵倩红, 张燕, 刘鑫. 多学科持续发力 终结结核病流行[J]. 结核与肺部疾病杂志, 2024, 5(4): 279-282. |
[2] | 刘鑫, 仵倩红, 陈其亮, 郭乐. Ⅲ期结核性脓胸继发胸廓塌陷畸形情况及相关影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 283-288. |
[3] | 梁亚萍, 王卓, 刘家云, 朱蕾, 李静, 李蒙, 仵倩红. 国产结核分枝杆菌T细胞免疫反应检测试剂盒诊断结核病的临床试验研究[J]. 结核与肺部疾病杂志, 2024, 5(4): 289-293. |
[4] | 陈燕玲, 吴迪, 陈秀平, 林宇君, 陈晓红. 肺结核及并发肺外结核患者淋巴细胞亚群变化的研究及其临床意义[J]. 结核与肺部疾病杂志, 2024, 5(4): 294-304. |
[5] | 勒者拉机, 何新, 徐强, 范丽, 曹红菊, 孙闪华. 2019—2023年四川省凉山彝族自治州美姑县肺结核流行病学特征分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 311-316. |
[6] | 赵文丽, 方梓昊, 徐雁南, 刘苏洋, 林健雄, 陈壮濠, 符慧, 陈蕊明, 常巧呈. 2005—2023年广东省南澳县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 317-324. |
[7] | 夏军. 2014—2023年江西省上饶市肺结核流行病学特征分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 325-332. |
[8] | 蔡晓婷, 伍小英, 何立乾, 江坤洪. 家庭医生签约服务与肺结核患者临床特征的关联性研究[J]. 结核与肺部疾病杂志, 2024, 5(4): 333-338. |
[9] | 李亚波, 樊丽娟, 孙秀利, 缑良芝, 任倍莹, 师娟子, 王芳, 马晓玲, 谢永宏, 刘鑫, 仵倩红. 女性不孕症在行体外受精-胚胎移植前结核感染筛查及诊疗进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 352-357. |
[10] | 魏靖入, 陈卉, 成君. 高中学生肺结核筛查和预防性治疗研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 358-363. |
[11] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[12] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断[J]. 结核与肺部疾病杂志, 2024, 5(4): 376-378. |
[13] | 中华人民共和国国家卫生和计划生育委员会. WS 196—2017 结核病分类[J]. 结核与肺部疾病杂志, 2024, 5(4): 379-380. |
[14] | 姜若溪, 钟达, 窦小洁. 初治菌阳肺结核患者治疗失败影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(3): 236-243. |
[15] | 蔡晓婷, 江坤洪, 何立乾, 邓虹, 王挺, 赖铿, 伍小英. 广州市海珠区老年人肺结核筛查结果分析[J]. 结核与肺部疾病杂志, 2024, 5(3): 244-248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||